Matematika A3a 2008/5. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2013. szeptember 28., 15:32-kor történt szerkesztése után volt.

Feladat folytonosságra

Feladat. Folytonos-e a z = i-ben az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{i}z+1}{|z-\mathrm{i}|},\quad\quad\mathrm{ha}\;z\ne \mathrm{i}\\
\\
0,\quad\quad \mathrm{ha}\;z=\mathrm{i}
\end{matrix}
\right.

Ha z = x + iy és (x,y) ≠ (0,1), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{-y+1}{\sqrt{x^2+(y-1)^2}} \\
\cfrac{x}{\sqrt{x^2+(y-1)^2}}
\end{pmatrix}

Már az első komponens határértéke sem létezik, hisz (x,y)=(0,y) mentén alulról a (0,1)-hez tartva a határérték -1, az x=y-1 mentén pedig -1/gyök kettő.

A második tényező szintén nem.

Határérték

Komplex függvény C-beli pontban vett C-beli határértéke ugyanúgy értelmezett, mint az R2 esetben. Itt is érvényes, hogy pontosan akkor látezik a határérték, ha a komponensfüggvényeknek létezik a határértéke és ekkor a határérték egyenlő lesz a valós és képzetes komponens határértékéből alkotott komplex számmal.

A ∞ miatt érdemes külön is megfogalmazni a határérték definícióját, bár az teljesen analóg a valós esettel. Legyen f egy az AC halmazon értelmezett, C-be képező függvény. Legyen \scriptstyle{u\in \overline{\mathbf{C}}} az A torlódási pontja, azaz minden r > 0 esetén legyen olyan aA, hogy a ∈ Br(u)\{u}. Azt mondjuk, hogy az f-nek a \scriptstyle{v\in \overline{\mathbf{C}}} elem határértéke az u-ban, ha

minden ε > 0 esetén létezik olyan δ > 0, hogy minden zA ∩ Bδ(u)\{u}-re f(z) ∈ Bε(v)

ahol természetesen a ∞ környezetei a már említett módon értendők.

Feladat. Igazoljuk definíció szerint, hogy

  1. \lim\limits_{z\to 0}\frac{1}{z}=\infty
  2. \lim\limits_{z\to \infty}\frac{1}{z}=0

1. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| < δ esetén, hogy a függvényérték a ∞ ε sugarú környezetébe esik, azaz:

\left|\frac{1}{z}\right|>\frac{1}{\varepsilon}

Világos, hogy ezt azt jelenti, hogy

|z|<\varepsilon

amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| < δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.

2. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| > 1/δ esetén, hogy a függvényérték a 0-nak ε sugarú környezetébe esik, azaz:

\left|\frac{1}{z}\right|<\varepsilon

Világos, hogy ezt azt jelenti, hogy

|z|>\frac{1}{\varepsilon}

amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| > 1/δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.

A végtelen határérékkel történő számolás szabályai előtt definiálnunk kell néhány kibővített műveletet. Ezt a következők szellemében tesszük:

Ha a és b valamelyike a ∞ szimbólum (a másik, ha nem ilyen, akkor komplex szám), akkor az a * b alapműveletet akkor értelmezzük a c szimbólumként (mely szintén vagy komplex szám, vagy az ∞), ha minden a határértékű f függvény esetén és minden b határértékű g függvény esetén a f*g szükségszerűen a c-hez tart. Ekkor mondjuk tehát, hogy az
a * b = c
definíció jó.

Például a ∞ + ∞ művelet feltétlenül értelmezett és értéke a ∞, mert könnyen látható, hogy bármely két, a ∞-hez tartó függvény összege is a ∞-hez tart. De a 0 \cdot ∞ művelet nem értelmezhető, mert van két függvénypár, mely ilyen alakú határértékekkel rendelkezik, de a szorzatuk máshoz tart. Pl.: (1/Re(z)) \cdot Re(z) \to 1, a z=0-ban, de (1/Re(z)) \cdot 2 Re(z) \to 2 a z=0-ban.

DefinícióVégtelen és alapműveletek – Az alábbi műveleti szabályokat vezetjük be a ∞, szimbólumra vonatkozóan, az alábbiakban z tetszőleges komplex szám, n tetszőleges nemnulla komplex szám:

  1. \infty+z=\infty ,
  2. \infty-z=\infty,  \quad\quad z-\infty=\infty,
  3. \infty\cdot\infty=\infty, \quad\quad \infty\cdot n=\infty,
  4. \frac{z}{\infty}=0 \quad\quad \frac{\infty}{z}=\infty,

továbbá a szorzás és az összeadás kommutatív.

Megjegyezzük még, hogy \overline{\infty}=\infty, azaz a végtelen konjugáltja saját maga.

DefinícióHatározatlan esetek – Az alábbi alapműveletek nem értelmezhetők:

  1. \infty-\infty,
  2. 0\cdot\infty, \quad\quad \infty\cdot 0,
  3. \frac{\infty}{\infty},
  4. \frac{0}{0}


TételVégtelen határérték és alapműveletek – Ha az f és g komplex függvényeknek létezik határértékük az \scriptstyle{u\in \overline{\mathbf{C}}} helyen, az f * g alapművelettl elkészített függvény értelmezési tartományának torlódási pontja u és a limu f * limu g alapművelet elvégezhető, akkor az f * g függvénynek is van határértéke u-ban és ez:

 \lim\limits_u(f\mbox{*}g)=\lim\limits_u f\,\mbox{*}\, \lim\limits_u g \,

Ezenkívül a határozatlan esetekben, amikor a határértékekkel végzett műveletek nem értelmezettek, az alapműveletekkel elkészített függvények határértékeire nem adható általános képlet (mert alkalmasan választott esetekben máshoz és máshoz tartanak).

A bizonyításról. Ennek a tételnek a bizonyítása minden nehézség nélkül elvégezhető vagy az R2-beli sorozatokra vonatkozó átviteli elv vagy a komponensfüggvények határértékére történő hivatkozás útján. Minenekelőtt azt kell szem előtt tartanunk, hogy a végtelenhez való tartás, a függvény abszolútértékének plusz végtelenhez tartását jelenti:

\exists\lim\limits_{z_0}f=\infty \quad\Longleftrightarrow \quad\exists\lim\limits_{z_0}|f|=+\infty

Feladat. Adjuk példákat arra, hogy a határozatlan alakú határértékeket valóban nem lehet definiálni.

Nézzük a 0-ban az alábbi függvényeket:

\frac{2}{z}\;-\;\frac{1}{z}=\frac{1}{z}\quad\to \infty miközben (\frac{1}{z}+2)\;-\;\frac{1}{z}=2\quad\to 2

\frac{1}{z}\;\cdot z=1\quad\to 1 miközben \frac{2}{z}\;\cdot\;z=2\quad\to 2

\frac{1}{z}/\frac{1}{z}=1\quad\to 1 miközben \frac{2}{z}/\frac{1}{z}=2\quad\to 2

\frac{z}{z}=1\quad\to 1 miközben \frac{2z}{z}=2\quad\to 2

Feladat. Számítsuk ki az alábbi határértékeket, ha léteznek!

  1. \lim\limits_{z\to 0}\frac{\mathrm{Im}(z)}{z},
  2. \lim\limits_{z\to i}\frac{z-i}{z^2+1},
  3. \lim\limits_{z\to 1}\frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i},
  4. \lim\limits_{z\to 0}\frac{1}{z}-\frac{2}{\overline{z}},
  5. \lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i},

Megoldás. 1. nemnulla z-re:

\frac{\mathrm{Im}(z)}{z}=\frac{\mathrm{Im}(z)\overline{z}}{z\overline{z}}=\frac{yx-y^2\mathrm{i}}{x^2+y^2}

de ekkor például az első komponensfüggvény x = 0 felől közelítve 0, míg az x = y-felől:1/2, azaz nem létezik az első komponensnek a (0,0)-ban határértéke, azaz a komplex függvénynek sem.

2. \frac{z-i}{z^2+1}=\frac{z-i}{(z+i)(z-i)}=\frac{1}{z+i}\quad\longrightarrow_{z\to i}\quad\infty

3. \frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i}=\frac{ \frac{1+iz-i}{z-1} }{ \frac{1-iz^2+i}{z^2-1} }=\frac{1+iz-i}{z-1}\cdot \frac{(z+1)(z-1)}{1-iz^2+i}

\left.\frac{iz+1-i}{-iz^2+i+1}(z+1)\right|_1=\frac{1}{1}\cdot 1

4. \frac{1}{z}-\frac{2}{\overline{z}}=\frac{\overline{z}-2z}{z\overline{z}} csak a valós részt nézve:

\left|\frac{-x}{x^2+y^2}\right|

az (x,y)=(x,0) esetben a (0,0)-hoz tartva: végtelen, de (x,y)=(0,y), akkor 0. tehát nincs határérték.

5. \lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i}=\left(\frac{\infty}{0}\right)=\infty.


Feladat. Adjuk meg minden z0C számra az alábbi függvény határértékét!

  1. f(z)=\frac{z}{\overline{z}-z},
  2. f(z)=\frac{z^2}{\overline{z}z-1},

1. \mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}\ne z\}

Folytonos az értelmezési tartományában. A határon:

\frac{z}{\overline{z}-z}=\frac{x+iy}{2iy}\,

z0 ≠ 0 esetén

\left|\frac{x+iy}{2iy}\right|\geq \frac{|z_0|/2}{2|y|}\to \infty

z0 = 0 esetén:

\frac{x+iy}{2iy}=\frac{1}{2}-i\frac{x}{2y}

ismert, hogy nincs határérték.

2. \mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}z\ne 1\}

Az egységkör pontjaitól különbözőkre folytonos, az egységkörön a végtelen, a végtelenben pedig nincs határérték. Ugyanis:

|f(z)|=\frac{|z|^2}{|\overline{z}z-1|},

így az egységkörön a számláló az 1-hez, a nevező a nullához tart. A végtelenben pedig t valóssal:

\lim\limits_{t\to +\infty} f(t+0.i)=\lim\limits_{t\to +\infty} \frac{t^2}{t^2-1}= 1\,
\lim\limits_{t\to +\infty} f(t.i)=\lim\limits_{t\to +\infty} \frac{-t^2}{t^2-1}= -1\,
Személyes eszközök