
previous up next

Lab No.7

Chess

Define a class called Piece. This will represent a chess piece (a figure on the chessboard). Store its position
and its color (Black/White) and its __repr__ function should write the position like A2, G3 etc. Store the
position as integers.

Define child classes King and Pawn!• 
Implement their __repr__ method which also prints the type of the figure. (You can implement it in
the parent class, too)

Look the unicode characters of the figures: [1]♦ 
Or their one letter names♦ 

• 

Every child class should have a .move(pos) method, where pos is a string like A3, G2 etc. Move the
piece to that position if it is accepted by the chess rules. If the move was successful return True
otherwise False!

• 

Define a PieceMoveError exception. If the move is not allowed, then raise this exception!• 

Implement the Board class. Store the list of figures.

Make an add method which puts a figure on the table.• 
Implement a move(pos1, pos2) method in Board which moves a figure from one position to the
other, if the move is allowed (handle the PieceMoveError exception).

Mind that there may be an other figure on the pos2 position. If the target position is occupied
with the same player's figure, then the move is not allowed. If the target is the other player's
figure, then remove their figure and replace it with the new figure (its a capture).

♦ 

Its easier if you implement an .occupied(pos) method first, which tells whether a given
position is occupied or not.

♦ 

• 

Implement the other pieces: Knight, Rook, Bishop and Queen!
Start with the Rook, its move is the simplest. Mind that the figure cannot pass through
existing figures!

♦ 

Implement the Knight class! The Knight and Queen can jump through other figures, so its
not a problem for them.

♦ 

After the bishop its not hard to implement Queen.♦ 

• 

Define a check method in Board. Return the color of the player who's King is in a chess position, or
empty string of there is no chess position!

Modify the Board's move method not to allow self-checks (when the active player makes its
own King into a chess)!

♦ 

• 

Implement the __repr__ method of Board!• 

After all these, implement the start method which assigns the board to a starting position.

CLI

Make a chess game in command line: read the moves of the players with raw_input and print the
board after each step. The white player starts and mind that the same player cannot move twice.

It's better to use algebraic notation (Bf5, Qc3, Ne2, Kcd4, Kxd5 etc.)♦ 

• 

Try it from command line• 

previous up next

Informatics2-2018/Lab08

 Lab No.7 1

http://wiki.math.bme.hu/view/Informatics2-2018/Lab07
http://wiki.math.bme.hu/view/Informatics2-2018#Labs
http://wiki.math.bme.hu/view/Informatics2-2018/Lab09
http://wiki.math.bme.huhttps://en.wikipedia.org/wiki/Chess_symbols_in_Unicode
http://wiki.math.bme.huhttps://en.wikipedia.orghttp://wiki.math.bme.hu/w/index.php?title=Algebraic_notation_(chess)#Piece_names_in_various_languages
http://wiki.math.bme.huhttps://en.wikipedia.org/wiki/Algebraic_notation_(chess)
http://wiki.math.bme.hu/view/Informatics2-2018/Lab07
http://wiki.math.bme.hu/view/Informatics2-2018#Labs
http://wiki.math.bme.hu/view/Informatics2-2018/Lab09

	Informatics2-2018/Lab08

