Informatics3-2024/Practical6
Tartalomjegyzék

e 1 Exercises

¢ 1.1 Complex class
now with operators

¢ 1.2 String with
operators

¢ 1.3 Dictionary

Exercises

Open a new project for each exercise or a new file if you're in the command line.
From this point onward use .cpp file extensions!

Complex class now with operators

Modify the lecture's "http://wiki.math.bme.huComplex"http://wiki.math.bme.hu code so it uses operator+,
operator*. Also make sure we can print a complex using cout.

As a reminder:

Complex operator+ (Complex other);
friend ostream& operator<<(ostream& os, Complexé& c);

#include<iostream>
#include<cmath>

using namespace std;

class Complex {
private:
float re;
float im;
public:
Complex ()
Complex (const Complex& other);
Complex (float r);
Complex (float r, float 1i);

’

Complex add(Complex other);
Complex times (Complex other);
float abs();

void print ();

~Complex () ;
}i

Complex::Complex () {
re = 0;
im = 0;

Complex: :Complex (const Complex& other) {
re = other.re;
im = other.im;

Tartalomjegyzék

http://wiki.math.bme.hu#Exercises
http://wiki.math.bme.hu#Complex_class_now_with_operators
http://wiki.math.bme.hu#Complex_class_now_with_operators
http://wiki.math.bme.hu#String_with_operators
http://wiki.math.bme.hu#String_with_operators
http://wiki.math.bme.hu#Dictionary

Informatics3-2024/Practical6

Complex::Complex (float r) {

Complex::Complex (float r, float i) {
re = r;
im = i;

Complex Complex::add(Complex other) {
return Complex (this->re + other.re, this->im + other.im);

Complex Complex::times (Complex other) {
float real = this->re * other.re - this->im * other.im;
float imag = this->re * other.im + this->im * other.re;
return Complex(real, imag);

float Complex::abs () {
return sqgrt (this->re * this->re + this->im * this->im);

void Complex::print () {
cout << re << " 4+ " << im << "i" << endl;

Complex::~Complex () {
}

int main (void) {
Complex a;
Complex b = Complex(1l,2);
Complex ¢ = a.times (b);
a.print () ;
b.print ();
c.print ();
(b.add(c)) .print () ;

cout << b.abs () << endl;

return 0;

String with operators

Extend the previous practical's String class with the operator+, which concatenates the strings. Also
operator= which can copy a string into an existing string. Make it work with C strings as well. For example
this should work:

String s;
s = "batman";

Also make the strings printable through cout.

Complex class now with operators

http://wiki.math.bme.huhttp://www.opengroup.org/onlinepubs/009695399/functions/cout.html
http://wiki.math.bme.huhttp://www.opengroup.org/onlinepubs/009695399/functions/cout.html

Informatics3-2024/Practical6

Dictionary
Write a class called Dictionary that implements python's dictionaries partially.

The keys should be strings. The values integers. This is an example of a dynamically created 2 dimensional
char array:

char** keys = new char*[100];
for(int i = 0; i < 100; i++) {

keys[i] = new char[20];
}

It's fine if the keys have an upper character limit, but try to make it truly dynamic. We should be able to add
as many elements as possible.

An example for the operatorf[]:
inté& operator([] (int index);
In our case the parameter would be a char* (C string).

It's important to return a reference for operator[], it makes it possible to use the return values as a left value,
for example:

dict ["batman"] = 1;
The following are needed:

® Default constructor: an empty dictionary

e operator|[]: make sure we can add new values with this (make it work as a right and a left value as
well). If we call it with a key that doesn't have a value yet, we should create that key/value pair.

® Make it cout friendly. When we print a dictionary we should see the whole content of it (all pairs).
The formatting doesn't matter.

¢ remove(char*): removes the given key's key/value pair.

¢ Destructor

You can do this with a dynamically expanding array or you can use a linked list to store the pairs as well.

Dictionary

	Informatics3-2024/Practical6

