Érettségi gyakorló 1./Megoldások

A MathWikiből
(Változatok közti eltérés)
(Intervallumos halmazos)
(Intervallumos halmazos)
18. sor: 18. sor:
 
:<math>B=\{x\in\mathbf{R}\mid x<-3\mbox{ vagy }3<x\}
 
:<math>B=\{x\in\mathbf{R}\mid x<-3\mbox{ vagy }3<x\}
 
</math>
 
</math>
  A: ----------------O            O------------------->
+
  A:     ----------------O            O------------------->
                  -3            3     
+
                        -3            3     
  B:                             *------------------->
+
  B:                                 *------------------->
                                2
+
                                    2
 +
A&cap;B
 
{| class="wikitable" style="text-align:center"
 
{| class="wikitable" style="text-align:center"
 
|- bgcolor="#efefef"
 
|- bgcolor="#efefef"
 
||[[Érettségi gyakorló 1.#Intervallumos feladat|vissza]]
 
||[[Érettségi gyakorló 1.#Intervallumos feladat|vissza]]
 
|}
 
|}

A lap 2017. március 31., 19:29-kori változata

Intervallumos halmazos

Legyen

A=\{x\in\mathbf{R}\mid 2\leq x\}

és B\; a

\mathrm{log}_2(x^2-9)\;

kifejezés értelmezési tartománya. Adja meg az

a) A\cap B,
b) B\setminus A,
c) A\setminus B és
d) A\cup B.

halmazokat!

MO.: A

\mathrm{log}_2(x^2-9)\;

kifejezéssel kapcsolatban tudjuk, logaritmus mellett csak pozitív szám állhat, ezért

x^2-9>0\;

x2 − 9 képe egy fölfelé nyitott parabola, x=\pm 3 gyökökkel, ezért ez a kifejezés x < − 3 ill. 3 < x esetekben pozitív:

B=\{x\in\mathbf{R}\mid x<-3\mbox{ vagy }3<x\}
A:      ----------------O             O------------------->
                       -3             3    
B:                                  *------------------->
                                    2
A∩B 
vissza
Személyes eszközök