Érettségi gyakorló 1./Megoldások

A MathWikiből
(Változatok közti eltérés)
(Intervallumos halmazos)
(Intervallumos halmazos)
24. sor: 24. sor:
 
  A∩B:                                  O------------------->
 
  A∩B:                                  O------------------->
 
                                       3
 
                                       3
 +
B\A:                                *-*------------------->
 +
                                    2 3
 +
A\B:      -------------O
 +
                        -3
  
  

A lap 2017. március 31., 20:05-kori változata

Intervallumos halmazos

Legyen

A=\{x\in\mathbf{R}\mid 2\leq x\}

és B\; a

\mathrm{log}_2(x^2-9)\;

kifejezés értelmezési tartománya. Adja meg az

a) A\cap B,
b) B\setminus A,
c) A\setminus B és
d) A\cup B.

halmazokat!

MO.: A

\mathrm{log}_2(x^2-9)\;

kifejezéssel kapcsolatban tudjuk, logaritmus mellett csak pozitív szám állhat, ezért

x^2-9>0\;

x2 − 9 képe egy fölfelé nyitott parabola, x=\pm 3 gyökökkel, ezért ez a kifejezés x < − 3 ill. 3 < x esetekben pozitív:

B=\{x\in\mathbf{R}\mid x<-3\mbox{ vagy }3<x\}
A:      ----------------O             O------------------->
                       -3             3    
B:                                  *------------------->
                                    2
A∩B:                                  O------------------->
                                      3
B\A:                                *-*------------------->
                                    2 3
A\B:       -------------O
                       -3


vissza
Személyes eszközök