A3 2009 gyak 1

A MathWikiből
(Változatok közti eltérés)
17. sor: 17. sor:
 
:<math>+[t\cos t-\sin t]_0^{2\pi} +\frac{1}{6}[\sin^6t]_0^{2\pi}+[-t^2\sin t+2t\cos t-2\sin t]_0^{2\pi}=</math>
 
:<math>+[t\cos t-\sin t]_0^{2\pi} +\frac{1}{6}[\sin^6t]_0^{2\pi}+[-t^2\sin t+2t\cos t-2\sin t]_0^{2\pi}=</math>
 
:<math>=\mathrm{ch}((2\pi)^3)-1+\frac{1}{2}\mathrm{sh}(2(2\pi)^3)=\mathrm{ch}(8\pi^3)-1+\frac{1}{2}\mathrm{sh}(16\pi^3)</math>
 
:<math>=\mathrm{ch}((2\pi)^3)-1+\frac{1}{2}\mathrm{sh}(2(2\pi)^3)=\mathrm{ch}(8\pi^3)-1+\frac{1}{2}\mathrm{sh}(16\pi^3)</math>
 +
 +
'''2.''' Integráljuk a 
 +
:<math>v(x,y,z)=(2xy-z,x^2+z,y-x)\,</math>
 +
vektormezőt az
 +
:<math>r(t)=(3\cos t,4\sin t,2)\quad\quad 0\leq t\leq \pi</math>
 +
görbe mentén!
 +
 +
''Mo.'' A vektormező rotációmentes:
 +
:<math>\mathrm{rot}\, v=\begin{vmatrix}i & j & k\\ \partial_x & \partial_y &\partial_z \\ 2xy-z & x^2+z & y-x\end{vmatrix}=i(1-1)-j(-1-(-1))+k(2x-2x)\equiv 0</math>

A lap 2009. október 27., 10:45-kori változata

1. Integrálja a

v(x,y,z)=(\mathrm{sh}(y^2\sqrt[3]{x})+\mathrm{ch}\,(x+y^3),z\,\mathrm{sh}\,(\cos y)+yz,z^5+y^2)

vektormezőt az

r(t)=(t^3,t,\sin t),\quad\quad t\in[0,2\pi]

görbe mentén!

Mo.

r(t)=(3t^2,1,\cos t)\,
\int v \mathrm{d}r=
=\int \limits_0^{2\pi} 3t^2\mathrm{sh}(t^3)+3t^2\mathrm{ch}\,(2t^3)+\sin t\mathrm{sh}\,(\cos t)+t\sin t +\cos t \sin^5t+t^2\cos t\;\mathrm{d}t=
=\int \limits_0^{2\pi} 3t^2\mathrm{sh}(t^3)+\frac{1}{2}6t^2\mathrm{ch}\,(2t^3)-(-\sin t)\,\mathrm{sh}\,(\cos t)+t\sin t +\cos t \sin^5t+t^2\cos t\;\mathrm{d}t=
itt \int t\sin t\,\mathrm{d}t=t\cos t-\int \cos t\,\mathrm{d}t=t\cos t-\sin t
és \int t^2\cos t\,\mathrm{d}t=-t^2\sin t+\int 2t\sin t\mathrm{d}t=
=-t^2\sin t+2t\cos t-2\int \cos t\mathrm{d}t=-t^2\sin t+2t\cos t-2\sin t

ezért

=[\mathrm{ch}(t^3)]_0^{2\pi}+\frac{1}{2}[\mathrm{sh}\,(2t^3)]_0^{2\pi}-[\mathrm{ch}\,(\cos t)]_0^{2\pi}+
+[t\cos t-\sin t]_0^{2\pi} +\frac{1}{6}[\sin^6t]_0^{2\pi}+[-t^2\sin t+2t\cos t-2\sin t]_0^{2\pi}=
=\mathrm{ch}((2\pi)^3)-1+\frac{1}{2}\mathrm{sh}(2(2\pi)^3)=\mathrm{ch}(8\pi^3)-1+\frac{1}{2}\mathrm{sh}(16\pi^3)

2. Integráljuk a

v(x,y,z)=(2xy-z,x^2+z,y-x)\,

vektormezőt az

r(t)=(3\cos t,4\sin t,2)\quad\quad 0\leq t\leq \pi

görbe mentén!

Mo. A vektormező rotációmentes:

\mathrm{rot}\, v=\begin{vmatrix}i & j & k\\ \partial_x & \partial_y &\partial_z \\ 2xy-z & x^2+z & y-x\end{vmatrix}=i(1-1)-j(-1-(-1))+k(2x-2x)\equiv 0
Személyes eszközök