A3 2009 gyak 2

A MathWikiből
(Változatok közti eltérés)
(Homogén fokszámú egyenlet)
(Homogén fokszámú egyenlet)
33. sor: 33. sor:
  
 
'''2.''' Oldjuk meg az  
 
'''2.''' Oldjuk meg az  
:<math>y'xy^3=x^4+y^4</math>
+
:<math>y'xy^3=x^4+y^4\,</math>
 
egyenletet!
 
egyenletet!
 
''Mo.'' Általános megoldás:
 
''Mo.'' Általános megoldás:

A lap 2009. november 19., 16:16-kori változata

Szeparábilis differenciálegyenlet

1. Oldjuk meg az

y'=\sin(x)y\,\mathrm{ln}\,y

egyenletet az

a)  y(0)=1\,
b) y(0)=e\,

kezdeti feltételek mellett!

Mo. a) Az egyenlet konstans megoládsa az y(x)=1. Ez a kezdeti feltételnek megfelel.

b) Az általános megoldásból keressük a kezdeti feltételt kielégítő megoldást:

\frac{1}{y\,\mathrm{ln}\,y}y'=\sin x
\frac{1}{y}\mathrm{ln}^{-1}(y)y'=\sin x
\mathrm{ln}\,|\mathrm{ln}\,y|=-\cos x+C

ez az implicit egyenlet. Ha x=0 és y=e, akkor

0=-1+C\,, C=1\,

és

y(x)=e^{e^{(1-\cos x)}}

Megjegyzés. Minden R× R+-beli kezdeti feltételre egyértelműen létezik a megoldás.

Homogén fokszámú egyenlet

Azt mondjuk, hogy az y' = F(x,y) egyenlet homogén fokszámú, ha

F(\lambda x,\lambda y)=F(x,y)\,

A homogén fokszámú egyenlet megoldása visszavazethető a szeparálásra az

u=\frac{y}{x}\,

új változó bevezetésével, ahol u = u(x) az ismeretlen függvény. Tehát:

y=ux\,

Ekkor

(xu)'=u+xu'=y'\,

azaz

y'=u'x+u\,

2. Oldjuk meg az

y'xy^3=x^4+y^4\,

egyenletet! Mo. Általános megoldás:

(u'x+u)xu^3x^3=x^4+u^4x^4\,
u'x+u^4=1+u^4\,
u'x=1\,
u'=\frac{1}{x}\,
\frac{u^2}{2}=\mathrm{ln}\,|x|+C\,
u=\pm\sqrt{2\mathrm{ln}\,|x|+2C}\,
y=\pm x\sqrt{\mathrm{ln}\,px^2}\,

A szinguláris megoldás:

\lim\limits_{x\to 0}x\sqrt{\mathrm{ln}\,px^2}=\lim\limits_{x\to 0}\sqrt{\mathrm{ln}\,(px^2)^{x^2}}
\lim\limits_{x\to 0}x^2ln\,px^2=\frac{\frac{1}{px^2}2xp}{-\frac{2}{x^3}}

azaz a 0-hoz tart, így legalább kettő (valójában végtelen) megoldás halad át a (0,0) ponton.



Laurent-sorfejtés

5. Határozzuk meg az

f(z)=\frac{1}{(z-1)(z-3)}

nulla körüli Laurent-sorait!

Mo.

f(z)=c\left(\frac{1}{z-1}-\frac{1}{z-3}\right)=-\frac{1}{2}\frac{z-3-z+1}{(z-1)(z-3)}=-\frac{1}{2}\left(\frac{1}{z-1}-\frac{1}{z-3}\right)

alkalmas tehát a c=-1/2.

Ha |z|<1, akkor

\frac{1}{z-1}=-\frac{1}{1-z}=-\sum\limits_{n=0}^{\infty} z^n=\sum\limits_{n=0}^{\infty} -z^n

Ha |z|>1, akkor

\frac{1}{z-1}=\frac{1}{z}\frac{1}{1-\frac{1}{z}}=\sum\limits_{n=0}^{\infty} z^n=\sum\limits_{n=0}^{\infty} z^{-n-1}

A másik tag:

Ha |z/3|<1, azaz |z|<3

\frac{1}{z-3}=-\frac{1}{3}\frac{1}{1-\frac{z}{3}}=-\frac{1}{3}\sum\limits_{n=0}^{\infty} \frac{1}{3^n}z^n=\sum\limits_{n=0}^{\infty} -\frac{1}{3^{n+1}}z^n

Ha |z|>3 , akkor

\frac{1}{z-3}=\frac{1}{z}\frac{1}{1-\frac{3}{z}}=\frac{1}{z}\sum\limits_{n=0}^{\infty} 3^nz^{-n}=\sum\limits_{n=0}^{\infty} 3^nz^{-n-1}

Tehát a Laurent-sorok:

|z|<1 esetén reguláris:

f(z)=\frac{1}{2}\sum\limits_{n=0}^{\infty} -z^n+\frac{1}{2}\sum\limits_{n=0}^{\infty} \frac{1}{3^{n+1}}z^n=\sum\limits_{n=0}^{\infty}\frac{1}{2}\left(\frac{1}{3^n}-1\right)z^n

1<|z|<3 esetén vegyes:

f(z)=\frac{1}{2}\sum\limits_{n=0}^{\infty} z^{-n-1}+\frac{1}{2}\sum\limits_{n=0}^{\infty} \frac{1}{3^{n+1}}z^n=\sum\limits_{n=-\infty}^{\infty}\frac{1}{2}\begin{cases}z^n, & n<0 \\ (\frac{1}{3^n}-1)z^n, &n\geq 0\end{cases}

|z|>3 esetén csak főrész:

f(z)=\frac{1}{2}\sum\limits_{n=0}^{\infty} z^{-n-1}-\frac{1}{2}\sum\limits_{n=0}^{\infty} 3^nz^{-n-1}=\sum\limits_{n=-\infty}^{-1}\frac{1}{2}(1-3^{-n-1})z^n

HF Fejtsük sorba a 0 körül az

f(z)=\frac{1}{z(1+z^2)}\,

függvényt!

Személyes eszközök