Bolzano–Weierstrass-tételkör

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2008. május 22., 08:34-kor történt szerkesztése után volt.

A Bolzano–Weierstrass-tételkör és a hozzá kapcsolódó állítások Rn jellegzetes topologiai tulajdonságaira mutatnak rá. Lényegében a korlátos és zárt halmazok kompaktságáról szólnak.

Tartalomjegyzék

Sorozatkompaktság és B–W-tétel

A Bolzano–Weierstrass-tétel az úgy nevezett sorozatkompaktság fogalmával kapcsolatban kulcsfontosságú tényre mutat rá. Az említett fogalom a következő.

Egy K részhalmaz sorozatkompakt RN-ben (vagy még általánosabban egy M metrikus térben), ha minden a K-ban haladó sorozatból kiválasztható K-beli határértékű konvergens részsorozat. Jelekben:

K sorozatkompakt
\Leftrightarrow_{\mathrm{def}}
\forall(a_n)\in K^{\mathbf{Z}^+}\;\;\exists(n_k)\in (\mathbf{Z}^+)^{\mathbf{Z}^+}\quad (n_k)\mbox{ indexsorozat} \;\;\wedge\;\; \exists\lim(a_{n_k})\in K

A konvergens részsorozatra vonatkozó tétel RN-ben:

BOLZANO–WEIERSTRASS-FÉLE KIVÁLASZTÁSI TÉTEL. Korlátos sorozatnak van konvergens részsorozata.

Bizonyítását külön nézzük az egy és a többváltozós esetre.

Az egyváltozós eset

Bizonyítás csúcselemmel

Belátjuk, hogy minden valós sorozatból kiválasztható monoton részsorozat.

Ehhez először vezessük be a csúcselem fogalmát. ak-t csúcselemnek nevezzük, ha minden n \geq k esetén a_n \leq a_k. (Vagyis azokat az elemeket nevezzük így, amelyeknél a nagyobb indexű elemek között nincs nagyobb.)

Ekkor két eset lehetséges:

  1. Végtelen sok csúcselem van a sorozatban. Ha n_1 < n_2 < n_3 < \ldots indexek, melyekre a_{n_1}, a_{n_2}, a_{n_3}, \ldots csúcselemek, akkor ez utóbbi sorozat nyilvánvalóan monoton csökkenő.
  2. Véges sok csúcselem van a sorozatban. Vagyis létezik n0, hogy minden n > n0 esetén an nem csúcselem.
  • De a_{n_0} nem csúcselem, vagyis létezik n1 > n0, hogy a_{n_1} > a_{n_0}.
  • De a_{n_1} nem csúcselem, vagyis létezik n2 > n1, hogy a_{n_2} > a_{n_1} stb.

Ekkor viszont a_{n_1}, a_{n_2}, a_{n_3}, \ldots nyilván szigorúan monoton növő sorozat.

Vagyis minden sorozatnak van monoton részsorozata. De a mi sorozatunk egyben korlátos is, márpedig korlátos monoton sorozat konvergens.

Bizonyítás Borel–Lebesgue-tétellel

Azt fogjuk belátni, hogy a sorozatnak van sűrűsödési pontja, azaz olyan pont, melynek minden nyílt környezetében van végtelen sok sorozatbeli elem. Ekkor ugyanis már kiválasztható az u sűrűsödési helyhez konvergáló részsorozat: minden n-re:

b_n = \min\{ i > n \mid |a_i-u| < \delta_n\}

ahol (δn) egy szigorúan monoton csökkenő nullsorozat.

Legyen [a,b] olyan korlátos és zárt intervallum, mely lefedi a sorozatot. Tegyük fel indirekt módon, hogy an-nek nincs sűrűsödési helye. Ekkor minden x[a,b]-nek létezik olyan nyílt környezete, melyben csak véges sok sorozatbeli elem van. Az [a,b] intervallum ezen halmazokból álló nyílt lefedéséből kiválasztható véges sok, mely még mindig lefedés, éspedig a Borel–Lebesgue-tétel miatt. Tehát a sorozatnak összesen véges sok szor véges sok, azaz véges sok eleme eshet [a,b]-be, ami ellentmond annak, hogy a sorozatnak végtelen sok tagja van és ez mind [a,b]-ben van.

Többváltozós eset

Bizonyítás

Megjegyzések. A csúcselemes bizonyítás nem működik abban az értelmeben, hogy közvetlenül nem hivatkozhatunk rájuk, mert nincs RN-ben a műveletekkel kompatibilis rendezés. Gondolhatnók arra is, hogy komponensenként használjuk az egydimenziós B–W-tételt. Ezzel a következő a probléma. Világos, hogy létezik minden projekciósorozatra egy-egy részsorozat, mely konvergens. Ám ebből egyáltalán nem következtethetünk arra, hogy ezek metszetéből kiválasztható részsorozat. Ellenpéldaként vegyünk egy R2-ben haladó sorozatot. Tegyük fel, hogy (szerencsétlen módon) az egydimenziós B–W-tétel az első komponensek sorozatából a páros indexűeket, a második komponensek közül a páratéan indexűeket választja ki. Ekkor a kétdimenziós sorozatnak nincs olyan részsosozata, mely a komponensorozatok közös indexeikből válaszható ki, tekintve, hogy a közös indexen halmaza üres.

A fentiek miatt olyan módon kell konvergens részsorozatokat kiválasztanunk, mely bizonyosan végtelen sok közös indexel rendelkeznek. A konstrukció a következő.

Bizonyítás. Legyen

(a_n)=(a_n^{(1)}, a_n^{(2)}, ..., a_n^{(N)})\in (\mathbf{R}^N)^{\mathbf{Z}^+}

egy N komponensű sorozat, mely korlátos RN-ben. Ekkor a komponenssorozatok is korlátosak. Az egydimenziós B–W-tétel szerint az

(a_n^{(1)})

sorozathoz létezik σ1 indexsorozat úgy, hogy az

(a_n^{(1)})\circ\sigma_1

konvergens részsorozat. Hasonlóképpen, de a

(a_n^{(2)})\circ\sigma_1

sorozatnak is van

(a_n^{(2)})\circ\sigma_1\circ\sigma_2

konvergens részsorozata. Megállapíthatjuk, hogy a

(a_n^{(1)})\circ\sigma_1\circ\sigma_2

sorozat szintén konvergens, mert konvergens sorozat részsorozata. Ugyanígy léteznek σ1, σ2, ..., σN indexsorozatok, hogy a

(a_n^{(1)})\circ\sigma_1
(a_n^{(2)})\circ\sigma_1\circ\sigma_2
\vdots
(a_n^{(N)})\circ\sigma_1\circ\sigma_2\circ...\circ\sigma_N

sorozatok mind konvergensek és így tetszőleges k=1...N-re

(a_n^{(k)})\circ\sigma_1\circ\sigma_2\circ...\circ\sigma_N

is az, ami pontosan azt jelenti, hogy az

(a_n)\circ\sigma_1\circ\sigma_2\circ...\circ\sigma_N

sorozat komponensenként konvergens, azaz konvergens. A

\sigma_1\circ\sigma_2\circ...\circ\sigma_N

tehát olyan indexsorozat, mely konvergens részsorozatot választ ki (an)-ből.

Kompakt halmazok és H–B-tétel

Kompakt egy K halmaz, ha minden nyílt halmazrendszerből, melynek uniója lefedi K-t kiválasztható véges sok nyílt halmaz is, melyek véges uniója még mindig lefedi K-t.

Heine–Borel-tétel. Korlátos és zárt halmaz kompakt.

Rn-ben tehát a kompaktság ugyanaz, mint a sorozatkompaktság.

Rn véges dimenziószáma nagyon lényegesen hozzájárul a fenti tételek fennállásához. Általában (Haussdorf-térben) kompakt halmaz korlátos és zárt. Ám, van olyan végtelen dimenziós normált tér, melyben zárt és korlátos halmaz nem kompakt. Legyen ugyanis \mbox{ }_{\ell_{\infty}(\mathbf{R})} a korlátos sorozatok tere. A téren a norma a suprémum:

||s||_{\infty}=\sup\{|s_n|\mid n\in\mathbf{N}\}

Ekkor a

H:=\{s\in\ell^{\infty}(\mathbf{R})\mid ||s||\leq 1\}

"gömb" nem kompakt. Hasonló furcsaságokat jelentkeznek a p-edik hatványon szummálható sorozatok \mbox{ }_{\ell_{p}(\mathbf{R})} terében is. Számunkra esetleg a véges sorösszeggel rendelkező \mbox{ }_{\ell_{1}(\mathbf{R})} tér bír jelentőséggel.

Személyes eszközök