Darboux-tétel

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2008. június 13., 18:40-kor történt szerkesztése után volt.
(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)

A Darboux-tétel a matematikai analízisben azt mondja ki, hogy egy intervallumon differenciálható függvény deriváltfüggvénye olyan, hogy bármely két függvényértéke közé eső értéket felvesz. A tétel egyik következménye, hogy a deriváltfüggvénynek ugrása vagy megszüntethető szakadása semmiképpen nem lehet.

Tartalomjegyzék

Megjegyzések

Az világos, hogy ha egy az I intervallumon értelmezett f valós függvény folytonosan differenciálható, akkor \scriptstyle{f'} két függvényértéke között minden értéket fölvesz. Ez amiatt van, hogy ekkor \scriptstyle{f'} folytonos I-n és a Bolzano–Darboux-tétel miatt Darboux-tulajdonságú. Ám, a deriváltfüggvények annyira speciálisak, hogy ez a tulajdonság a folytonos deriválhatóság feltétele nélkül is teljesül. Hasonló a helyzet Fermat szélsőértékekre vonatkozó tételéhez. Ha feltesszük, hogy az f:I \to R differenciálható függvény folytonosan differenciálható az u belső pontban és ott úgy van lokális maximuma, hogy előtte f szigorúan monoton növekvő, utána szigorúan monoton csökkenő, akkor a derivált folytonossága miatt u-ban f deriváltja nulla kell, hogy legyen. Ám –gyengítve a tétel feltételein – ez már akkor is igaz, ha a folytonos differenciálhatóságot és az előtte-utána szigorúan monoton feltételt elhagyjuk.

A tétel

Minden differenciálható valós-valós függvény deriváltfüggvénye Darboux-tulajdonságú.

Bizonyítás

Elegendő belátni, hogy ha egy f : [a,b]\rightarrow R korlátos és zárt intervallumon értelmezett, differenciálható (a végpontokban balról, jobbról differenciálható) függvény olyan, hogy f '(a) < f '(b), akkor minden m ∈ (f '(a),f '(b)) nyílt intervallumbeli értékhez található olyan c ∈ (a,b) nyílt intervallumbeli pont, hogy m = f '(c).

Weierstrass tételével

Definiáljuk minden x ∈ [a,b]-re a

g(x):=f(x)-m\cdot x

függvényt. Minthogy f is, így g is folytonos és differenciálható. g deriváltja:

g'(x):=f'(x)-m\,

azaz ha g '(x) = 0, akkor f '(x) = m, így feladatunk, hogy keressünk a belső pontok között zérushelyet g '-nek. Weierstrass tétele értelmében létezik g-nek minimuma. Ha ez a-ban van, akkor g '(a) = f '(a) – m < 0 miatt ott a függvény lokálisan csökkenne és lenne f(a)-nál kisebb értéke, ami lehetetlen. Ugyanígy g '(b) > 0 miatt lenne b előtt a függvénynek g (b)-nél kisebb értéke. A minimum helye tehát csak (a,b)-ben lehet és akkor a szélsőértékekre vonatkozó Fermat-tétel szerint ott g deriváltja 0, f deriváltja pedig, így m.

A Lagrange-féle középértéktétellel

Definiálni fogunk egy folytonos függvényt, melynek minden helyettesítési értéke olyan alakú, mint a Lagrange-féle középértéktételben szereplő hányados. Ennek a hányadosnak az értéke fog végigfutni az (f '(a), f '(b)) nyílt intervallum minden pontján, és így ad majd az f ' deriváltfüggvény, alkalmas c pontban m függvényértéket.

Legyen k az a és b számtani közepe. Legyen

g:(a,b)\rightarrow \mathbb{R};\;x\mapsto\begin{cases} \cfrac{1}{2}\cdot\cfrac{f(x+x-a)-f(a)}{x-a}, & \mbox{ha }x \in (a,k], \\ \cfrac{1}{2}\cdot\cfrac{f(x+x-b)-f(b)}{x-b}, & \mbox{ha }x\in (k,b)\end{cases}

Ellenőrizhetjük, hogy a g függvény k-ban is folytonos. A kissé bonyolult definíció azért van, hogy a hányadosfüggvény a végpontokban határértékként az egyoldali deriváltakat adja. Például a L'Hospital-szabállyal vagy egyszerűen a δ = x - a \rightarrow 0 határátmenetet véve és az f differenciálhatóságra hivatkozva igazolhatjuk ugyanis, hogy:

\lim_a g=f'(a)\, és
\lim_b g=f'(b)\,

Ekkor a Bolzano–Darboux-tétel következményeként létezik olyan ξ ∈ (a,b), hogy g(ξ) = m. Attól függően, hogy ξ az (a,b) melyik felébe esik, felírható vagy

m=\cfrac{f(2\xi-a)-f(a)}{(2\xi-a)-a}, vagy
m=\cfrac{f(2\xi-b)-f(b)}{(2\xi-b)-b}

tehát a Lagrange-féle középértéktétel következményeként vagy az ( a , 2ξ-a ) vagy a ( 2ξ-b , b ) nyílt intervallum valamely c pontjában fennáll az f '(c) = m egyenlőség.

Megjegyzés

Világos, hogy a tétel akkor is igaz, ha f a zárt [a,b]-n folytonos, és a nyílt (a,b)-n differenciálható.

Külső hivatkozások

/A PlanetMath Darboux's theorem (analysis) szócikke

Személyes eszközök