Informatika1-2015/Gyakorlat11

A MathWikiből
(Változatok közti eltérés)
32. sor: 32. sor:
  
 
== Feladatok ==
 
== Feladatok ==
 
=== Összefüggõ ===
 
 
Határozzuk meg, hogy az alábbi mátrix sorai (vagy oszlopai) milyen '''x''' értékekre lesznek összefüggõk. (Használjuk a '''solve''' parancsot a fentiekkel együtt.)
 
x  0  1
 
0  2  x
 
1  x -1
 
  
 
=== Blokkmátrix ===
 
=== Blokkmátrix ===
49. sor: 42. sor:
 
  -1  0 -1
 
  -1  0 -1
 
  -1 -1  0
 
  -1 -1  0
 +
 +
=== Egyenlet megoldás ===
 +
 +
Oldjuk meg az Ax = b alakú egyenletrendszert, ahol A és b rendre:
 +
 +
  1 -1  0  |  1
 +
  3  1 -1  |  1
 +
-2  0  1  |  2
 +
 
 +
=== Összefüggõ ===
 +
 +
Határozzuk meg, hogy az alábbi mátrix sorai (vagy oszlopai) milyen '''x''' értékekre lesznek összefüggõk. (Használjuk a '''solve''' parancsot a fentiekkel együtt.)
 +
x  0  1
 +
0  2  x
 +
1  x -1
  
  

A lap 2015. november 24., 10:52-kori változata

Tartalomjegyzék

Mátrixozás még

Emlékeztetõ és még pár dolog

Mátrixot megadhatunk a következõ módon:

m = Matrix([[1, 0], [0, 1]])

Ez a következõ mátrixot eredményezi:

1 0
0 1

Blokkmátrixot, csupa 1-es mátrixot, továbbá fõátlóval adott mátrixot is kényelmesen adhatunk meg:

A = diagonal_matrix([1, 5])
B = ones_matrix(2, 2)
block_matrix([[A, -1*A], [A^(-1), B]])

Ez a következõ mátroxot eredményezi:

 1   0| -1   0
 0   5|  0  -5
------+-------
 1   0|  1   1
 0 1/5|  1   1

Egy mátrix determinánsát kiszámolhatjuk a det metódussal:

m.det()


Feladatok

Blokkmátrix

Számoljuk ki a determinánsát a következõ blokkmátrixnak:

X I
O X

ahol I a 3x3-as egységmátrix és O a 3x3-as csupa 0 mátrix, X pedig a következõ:

 0 -1 -1
-1  0 -1
-1 -1  0

Egyenlet megoldás

Oldjuk meg az Ax = b alakú egyenletrendszert, ahol A és b rendre:

 1 -1  0  |  1
 3  1 -1  |  1
-2  0  1  |  2
 

Összefüggõ

Határozzuk meg, hogy az alábbi mátrix sorai (vagy oszlopai) milyen x értékekre lesznek összefüggõk. (Használjuk a solve parancsot a fentiekkel együtt.)

x  0  1
0  2  x
1  x -1



Listaértelmezések

Emlékeztetõ

[kifejezés for elem in bejárható_objektum]

Egy olyan listát hoz létre melyben a kifejezés szerepel a bejárható_objektum minden elemére. Bejárható objektum például egy lista, az is amit a range függvény hoz létre.

[kifejezés for elem in bejárható_objektum if feltétel]

Mint az elõzõ, de csak azok az elemek lesznek benne melyekre teljesül a feltétel.

[kifejezés for elem1 in bejárható_objektum1 if feltétel1
           for elem2 in bejárható_objektum2 if feltétel2
           for elemN in bejárható_objektumN if feltételN]

Több feltétel és ciklus is írható akár.

Pl:

[n^2 for n in range(1, 5)]  # [1, 4, 9, 16]
[n for n in [-1, 2, -3, 4] if n > 0]  # [2, 4]


Feladatok

Mit csinál?

Futtassuk le az alábbi példákat és értelmezzük õket mi is történik bennük és hogyan érjük ezt el.

[n for n in range(1, 10)]
[(n, m) for n in range(1, 10) for m in range(1, 5)]
[n for n in range(1, 10) if is_prime(n)]
[n for n in range(1, 100) if n % 5 == 0 and n % 7 == 1]
[(n, m) for n in range(1, 5) for m in range(n, 5)]
[(m, n) for n in range(1, 10) for m in range(n, 10) if m % n == 0]
sorted([(m, n) for n in range(1, 10) for m in range(n, 10) if m % n == 0])
sum([n for n in range(1, 10) if is_prime(n)])

Az utolsóhoz egy kis spoiler, ha nem menne: spoiler

[n for n in range(1, 100) if n == sum([m for m in range(1, n) if n % m == 0])]

Oldjuk meg

  1. Keressük meg az összes olyan 1000 alatti négyzetszámot, melynél eggyel nagyobb szám prím. Pl a 4 ilyen.
  2. Keressük meg az összes egy jegyû számhármast, mely egymás után írva megegyezik a köbeik összegével. Ilyen például az 1, 5, 3, mert 1^3 + 5^3 + 3^3 == 153
  3. Keressük meg az összes olyan 1000 alatti számot, melynek négyzete megegyezik az nálánál kisebb osztói köbeinek az összegével. (Egy kis csavar a tökéletes számokon)
Személyes eszközök