Informatika1-2015/Gyakorlat9

A MathWikiből
(Változatok közti eltérés)
(Tagonként vagy mátrixként)
14. sor: 14. sor:
  
 
=== Számológép ===
 
=== Számológép ===
Írjuk be az <tt>octave</tt> parancssorába:
+
Az Octave egy fejlettebb számológépként is használható. Írjuk be az <tt>octave</tt> parancssorába az alábbiakat:
 
  2+3
 
  2+3
 
majd üssünk <tt>Enter</tt>-t. Ennek hatására:
 
majd üssünk <tt>Enter</tt>-t. Ennek hatására:
99. sor: 99. sor:
  
 
=== Tartományok ===
 
=== Tartományok ===
A tartományok speciális sorvektorok, Próbáljuk ki:
+
A tartományok speciális sorvektorok, próbáljuk ki:
 
  1:10
 
  1:10
 
Ha nem egyesével akarunk ugrani:
 
Ha nem egyesével akarunk ugrani:
154. sor: 154. sor:
 
     7  10
 
     7  10
 
   15  22
 
   15  22
 
 
Hatványozás szintén, így az invertálás is:
 
Hatványozás szintén, így az invertálás is:
 
  [1 2; 3 4]^2
 
  [1 2; 3 4]^2
170. sor: 169. sor:
 
  sqrt([1 2; 3 4])
 
  sqrt([1 2; 3 4])
  
Bizonyos műveletek tagonként hatnak ha egy mátrixra alkalmazzuk, míg mások mátrix-műveletként. De tudunk váltani köztük.
+
Bizonyos műveletek ''tagonként hatnak'' ha egy mátrixra alkalmazzuk, míg mások mátrix-műveletként. De tudunk váltani köztük.
 
  > (1:4)^2
 
  > (1:4)^2
 
  error: for A^b, A must be a square matrix
 
  error: for A^b, A must be a square matrix
204. sor: 203. sor:
 
   1.00000  0.50000
 
   1.00000  0.50000
 
   0.33333  0.25000
 
   0.33333  0.25000
 +
 +
A nevesített függvények általában elemenként hatnak:
 +
sin(0:0.1:2*pi)
 +
exp([0,-1;1,0])
 +
A műveleti jelek pedig mátrix műveletként (<tt>*, ^, /, \</tt>)
  
 
== Változók ==
 
== Változók ==
Ahhoz hogy értelmes dolgokat tudjunk számolni, az adatokat ''változókban'' tároljuk.
+
Ahhoz hogy ne csak egy soros dolgokat tudjunk számolni, az adatokat ''változókban'' tároljuk.
 
  a=2
 
  a=2
 
  b=3
 
  b=3
231. sor: 235. sor:
 
  > _
 
  > _
  
Azt tapasztaljuk, hogy a változók mind '''1x1'''-es '''double''' típusúak.
+
Egy változó értékét bármikor felülírhatjuk:
Próbáljuk ki a következőket:
+
  > a=2;
  a=1000
+
  > a=[1,2;3,4];
  b=single(1000)
+
  > whos
  c=int32(1000)
+
  Variables in the current scope:
  d=int8(1000)
+
  Attr Name        Size                    Bytes Class
  whos
+
  ==== ====       ====                    ===== =====
 
+
        a          2x2                        32 double
==== Komplex számok ====
+
próbáljuk ki:
+
  z=2+3j
+
  whos z
+
Azt látjuk, hogy <tt>z</tt> dupla lebegő pontos, de 16 byte-ot foglal, mivel ''egy komplex szám két valós számmal'' ábrázolható.
+
  
 
[[Informatika1-2015/Gyakorlat8|Előző gyakorlat]] - [[Informatika1-2015#Gyakorlatok|Fel]] - [[Informatika1-2015/Gyakorlat10|Következő gyakorlat]]
 
[[Informatika1-2015/Gyakorlat8|Előző gyakorlat]] - [[Informatika1-2015#Gyakorlatok|Fel]] - [[Informatika1-2015/Gyakorlat10|Következő gyakorlat]]

A lap 2015. november 2., 19:46-kori változata

Előző gyakorlat - Fel - Következő gyakorlat

Tartalomjegyzék

Octave

Az Octave programmal lehet különböző matematikai számításokat numerikusan elvégezni, a nagytestvérének a MatLab-nak az ingyenes (opensource) változata.

Kezdeti lépések

Hozzáférés a programhoz

Ha otthonról dolgozunk, akkor a következő lehetőségek legalább egyikével éljünk:

A géptermekből Linux-ról futtassuk az Octave-ot

Számológép

Az Octave egy fejlettebb számológépként is használható. Írjuk be az octave parancssorába az alábbiakat:

2+3

majd üssünk Enter-t. Ennek hatására:

> 2+3
ans =  5
> _

Próbáljuk ki ezeket is:

2-3
2*3
2/3
floor(2/3)
mod(2,3)
2^3
sqrt(2)
log(2)
log(3)
log(8)/log(2)
exp(1)
pi
cos(pi/2)
(180/pi)*acos(0.5)

Adattípusok

Minden megadott szám lebegőpontos, akkor is, ha véletlenül egész:

1000/9
ans = 111.11

Viszont megadhatjuk, hogy egészekként értelmezze a számokat:

int32(1000)/int32(9)
ans = 111

Egy szám valós, amíg komplexnek nem bizonyul:

sqrt(2)
sqrt(-2)

A számábrázolások

  • double: dupla lebegő pontos, 64 bit (8 byte)
    • valós: 8 byte
    • komplex: 16 byte
  • single: szimpla lebegő pontos, 32 bit (4 byte)
    • valós 4 byte
    • komplex: 8 byte
  • int32: 32 bites kettes komplemens egész (4 byte)
  • int8: 8 bites kettes komplemens egész: -128..127 (1 byte)
  • uint32: 32 bites pozitív egész (4 byte)
  • uint8: 8 bites pozitív egész: 0..255 (1 byte)

A méret nagyon is számít:

log(single(1.0001))
log(double(1.0001))
int32(100+100)
int8(100+100)

Mátrixok

Az octave-ban minden szám egy mátrix

  • számok: 1x1
  • vektorok:
    • sorvektor: 1xn
    • oszlopvektor: nx1
  • matrix: nxm

Ennek alapos oka van, amit majd később fogunk megérteni és ami a MatLab leglényegéhez vezet bennünket, ezt vette át az octave is. Bővebben itt.

Sorvektor:

[1, 2, 3, 4]
[1 2 3 4]

Oszlopvektor:

[1;2;3;4]

Ez nem oszlopvektor:

[[1], [2], [3], [4]]

Mátrix:

[1 2; 3 4]
[1, 2; 3, 4]

Speciális mátrixok:

  • zeros: csupa 0
  • ones: csupa 1
  • eye: diagonálisban 1, máshol 0
  • diag: négyzetes diagonális mátrix, megadott főátlóval
zeros(2,3)
eye(2,3)
ones(3,1)
diag([1,2,3,4])

Próbáljuk ki:

size(5)
size([1,2,3])
size([1;2;3])

Tartományok

A tartományok speciális sorvektorok, próbáljuk ki:

1:10

Ha nem egyesével akarunk ugrani:

1:0.1:2
1:2:10

Komplex számmal nem lehet, mert azok nem rendezhetőek!
Az eredmény mindig double lesz, de utána konvertálhatjuk:

int32(1:0.5:10)

Leszálló tartományok:

4:-1:1

Diagonális mátrixot megadhatunk így is:

> diag(1:4)
ans =
  1 0 0 0
  0 2 0 0
  0 0 3 0
  0 0 0 4

Műveletek mátrixokkal

Mivel minden szám egyben egy 1x1-es mátrix, így ezek mindig használhatóak.

Transzponált

Transzponált egyszerűen vesszővel ('):

> [1 2; 3 4]'
ans =
 1 3
 2 4
> _

Vagy

> (1:4)'
ans =
  1
  2
  3
  4

Komplex mátrixokra a vessző adjungálást jelent:

> [1,2i;3i,4]'
ans =
  1 - 0i   0 - 3i
  0 - 2i   4 - 0i

Konjugálást így csinálhatunk: i'

Összeadás

1+(1:4)
eye(2,2)+ones(2,2)
[1;2;3;4]-[4;3;2;1]

Szorzás

Minden szorzás mátrixszorzás:

> [1 2; 3 4]*[1 2; 3 4]
ans =
   7   10
  15   22

Hatványozás szintén, így az invertálás is:

[1 2; 3 4]^2
[1 2; 3 4]^-1

A szorzásnál a méreteknek kompatibiliseknek kell lenniük:

ones(2,3)*ones(3,5)

Sorvektor szorozva oszlopvektorral a skalárszorzás, fordítva diádszorzatnak hívjuk:

[1,2,3]*[1;2;3]
[1;2;3]*[1,2,3]

Tagonként vagy mátrixként

Ha a hatványozást ismételt mátrixszorzásként értelmezi, akkor ez mi?

[1 2; 3 4]^0.5

És ez mi?

sqrt([1 2; 3 4])

Bizonyos műveletek tagonként hatnak ha egy mátrixra alkalmazzuk, míg mások mátrix-műveletként. De tudunk váltani köztük.

> (1:4)^2
error: for A^b, A must be a square matrix

Hibát ad, mert két 1x4-es mátrixnak nem értelmes a szorzata. De:

> (1:4).^2
ans =
  1  4  9 16

Minden műveleti jel olyan, hogy ha elé pontot rakunk, akkor elemenként hat. Például az összeadásnál a mátrix összeadás és az elemenkénti összeadás ugyan az.

> [1 2; 3 4]+[1 2; 3 4]
ans =
  2   4
  6   8
> [1 2; 3 4].+[1 2; 3 4]
ans =
  2   4
  6   8

De a szorzásnál már nem:

> [1 2; 3 4]*[1 2; 3 4]
ans =
   7   10
  15   22
> [1 2; 3 4].*[1 2; 3 4]
ans =
   1    4
   9   16

Hatványozás hasonlóan:

> [1 2; 3 4]^-1
ans =
 -2.00000   1.00000
  1.50000  -0.50000
> [1 2; 3 4].^-1
ans =
  1.00000   0.50000
  0.33333   0.25000

A nevesített függvények általában elemenként hatnak:

sin(0:0.1:2*pi)
exp([0,-1;1,0])

A műveleti jelek pedig mátrix műveletként (*, ^, /, \)

Változók

Ahhoz hogy ne csak egy soros dolgokat tudjunk számolni, az adatokat változókban tároljuk.

a=2
b=3
a+b

Mindig van egy ans nevű változónak, amiben az utoljára kiszámolt érték található.
Ha nincsen érték adva egy változónak, akkor nem tudunk hivatkozni rá:

> a/q
error: `q' undefined

A kettősponttal (;) csendes számolást végezhetünk, ekkor a parancs eredménye nem lesz kiírva:

a=2;
b=3;
a+b

A whos paranccsal megnézhetjük az aktuálisan tárolt változóinkat.

> whos
Variables in the current scope:
  Attr Name        Size                     Bytes  Class
  ==== ====        ====                     =====  =====
       a           1x1                          8  double
       ans         1x1                          8  double
       b           1x1                          8  double
Total is 3 elements using 24 bytes
> _

Egy változó értékét bármikor felülírhatjuk:

> a=2;
> a=[1,2;3,4];
> whos
Variables in the current scope:
  Attr Name        Size                     Bytes  Class
  ==== ====        ====                     =====  =====
       a           2x2                         32  double

Előző gyakorlat - Fel - Következő gyakorlat

Személyes eszközök