Matematika A1a 2008/7. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Folytonosság és függvényműveletek)
114. sor: 114. sor:
 
konvergens részsorozata (ha liminf(x<sub>n</sub>) = u-lenne, akkor konvergens lenne!). Eszerint akkor egy liminf(x<sub>n</sub>) < w < u számra igaz, hogy a (w,u] intervallumban a részsoeozatnak csak véges sok tagja van, ahogy az (f(w),f(u)] intervallumban is csak véges sok képe. De ez ellentmond annak, hogy a részsorozat képe az u-hoz tart.
 
konvergens részsorozata (ha liminf(x<sub>n</sub>) = u-lenne, akkor konvergens lenne!). Eszerint akkor egy liminf(x<sub>n</sub>) < w < u számra igaz, hogy a (w,u] intervallumban a részsoeozatnak csak véges sok tagja van, ahogy az (f(w),f(u)] intervallumban is csak véges sok képe. De ez ellentmond annak, hogy a részsorozat képe az u-hoz tart.
  
 +
'''Példa.''' Folytonosan invertálható-e az alábbi függvény? Indokoljuk a fenti tétel nélkül!
 +
:<math>f(x)=\left\{\begin{matrix}
 +
-x^2-1, & \mathrm{ha} &  x<0\\
 +
0, & \mathrm{ha} & x= 0\\
 +
x^2+1, & \mathrm{ha} &  x>0
 +
\end{matrix}\right.</math>
  
'''Példa.'''
+
 
 +
''Megoldás.'' Persze, hisz a negatívokon invertálható és csak negatív értéket vesz fel. A pozitívokon szintén és szintén csak pozitív értékeket vesz fel. A 0-beli érték az előző képhatlmazokon kívül esik (a 0). Az inverz:
 +
:<math>\mathrm{Dom}\,f^{-1}=(-\infty,-1)\cup\{0\}\cup(1,+\infty)</math>
 +
:<math>f^{-1}(y)=\left\{\begin{matrix}
 +
-\sqrt{-y-1}, & \mathrm{ha} &  y<-1\\
 +
0, & \mathrm{ha} & y= 0\\
 +
\sqrt{y-1}, & \mathrm{ha} &  y>1
 +
\end{matrix}\right.</math>
 +
Ez a függvény mindenütt folytonos, mert a gyök az, és a 0-ban izolált pontja van, ahol a függvények triviálisan folytonosak.
  
 
==Bolzano-tétel==
 
==Bolzano-tétel==

A lap 2009. március 25., 08:08-kori változata

<Matematika A1a 2008


Tartalomjegyzék

Pontbeli folytonosság

Definíció. Azt mondjuk, hogy az f: R \supset\!\to R függvény folytonos az értelmezési tartománya egy u pontjában, ha

(\forall \varepsilon>0)(\exists \delta>0)(\forall x\in \mathrm{Dom}(f))(|x-u|<\delta\;\Rightarrow\;|f(x)-f(u)|<\varepsilon)

Folytonos egy függvény, ha az értelmezési tartománya minden pontjában folytonos.

Példa. x \mapsto \sqrt{x} folytonos.

Legyen u > 0 és ε > 0. Legyen egyelőre δ tetszőlges. Ha x > 0 olyan, hogy |x - u| < δ, akkor

|\sqrt{x}-\sqrt{u}|=\frac{|x-u|}{\sqrt{x}+\sqrt{u}}\leq \frac{|x-u|}{\sqrt{u}}<\frac{\delta}{\sqrt{u}}=\varepsilon\,

tehát az ε-hoz a δ=ε/(\|u)-t kell választanunk.

Ha u=0, akkor


\sqrt{x}<\sqrt{\delta}=\varepsilon\,

tehát az ε-hoz a δ=ε2-t kell választanunk.

Példa. abs: x \mapsto |x| folytonos. Ezt azzal látjuk be, hogy az abszolútérték következő megadását tekintjük:

\mathrm{abs}(x)=\max\{a,-a\}\,

Tetszőleges u pontra igaz a következő becslés:

||x|-|u||\leq |x-u|\,

mert a háromszög egyenlőtlenség miatt:

|x|=|x-u+u|\leq |x-u|+|u|\,

azaz

|x|-|u|\leq|x-u|\,

illetve

|u|=|-u|=|x-u-x|\leq |x-u|+|x|\,

azaz

|u|-|x|\leq|x-u|\,

Tehát

||x|-|u||=\max\{|u|-|x|,|x|-|u|\}\leq|x-u|\,

Ezért ha δ:=ε, akkor:

|x-u|<\delta\;\Rightarrow\;||x|-|u||\leq|x-u|<\delta=\varepsilon\,

Heine-féle jellemzés. Az f: R \supset\!\to R függvény folytonos az értelmezési tartománya egy u pontjában, ha

(\forall (x_n)\in\mathrm{Dom}(f)^{\mathbf{Z}^+})(x_n\to u\;\Rightarrow\;f(x_n)\to f(u)

Ebből kapjuk azt a rendkívül hasznos eszközt, mellyel a nemfolytonosságot jellemezni tudjuk:


Pontbeli nemfolytonosság jellemzése. Az f: R \supset\!\to R függvény nem folytonos az értelmezési tartománya egy u pontjában, ha

létezik olyan (x_n)\in\mathrm{Dom}(f)^{\mathbf{Z}^+} sorozat, hogy bár x_n\to u, de f(x_n)\not\to f(u).

Példa.

\mathrm{sgn}:\mathbf{R}\to \mathbf{R},\;\left\{\begin{matrix}
+1,&\mbox{ ha} & x>0 \\
0,&\mbox{ ha} & x=0 \\
-1,&\mbox{ ha} & x<0 
\end{matrix}\right.

Nem folytonos a 0-ban.

Hiszen, ha xn a pozitívokon keresztül tart a 0-ba, akkor f(xn)≡+1, miközben f(0)=0≠+1.

Példa.

f:\mathbf{R}\to \mathbf{R},\;\left\{\begin{matrix}
\sin\left(\frac{1}{x}\right),&\mbox{ ha} & x\ne 0 \\
0,&\mbox{ ha} & x=0 \\
\end{matrix}\right.

nem folytonos a 0-ban.

Hiszen, ha

x_n=\frac{1}{\frac{\pi}{2}+2n\pi}\,

akkor x_n\to 0 a pozitívok felől, de

f(x_n)=\sin\left(\frac{1}{\frac{1}{\frac{\pi}{2}+2n\pi}}\right)=\sin\left(\frac{\pi}{2}+2n\pi\right)=+1\ne 0=f(0)

Megjegyezzük, hogy akárhogy is definiálnánk f(0)-t, a függvény nem lenne folytonos, mert ha f(0)≠+1, akkor a fenti sorozat ellenpélda, ha f(0)=+1, akkor az (1/πn) sorozat ellenpélda (mert ekkor f(x_n)\to 0).

Folytonosság és műveletek

Folytonosság és alapműveletek

FIA. A folytonosság invariáns az alapműveletekre.

Emiatt minden polinomfüggvény és racionális törtfüggvény folytonos. Ehhez csak egyetlen függvény, az identitás folytonosságát kell belátni.

Folytonosság és függvényműveletek

A függvényműveletek közül a legfontosabb, a függvénykompozíció:

\mathrm{Dom}(f\circ g)=\{x\in \mathrm{Dom}(g)\mid g(x)\in \mathrm{Dom}(f)\}
f\circ g:x\mapsto f(g(x))

Legyen f,g: R \to R u ∈ Dom(f\circg). Ha g folytonos u-ban és f folytonos g(u)-ban, akkor f\circg folytonos u-ban.

A másik az injektív függvények esetén az inverz függvény képzés.

Injektív egy f függvény, ha f(x1) = f(x2)-ből x1 = x2 következik az f értelmezési tartományában lévő minden x1 és x2-re. Ezt a tulajdonásgok használtuk, amikor azt írtuk:

\begin{matrix}
2^{x+8}=2^{x^2+5}\\
\Downarrow\\
x+8=x^2+5
\end{matrix}

vagy

\begin{matrix}
\sqrt{x+8}=\sqrt{x^2+5}\\
\Downarrow\\
x+8=x^2+5
\end{matrix}

Például szigorúan monoton függvény biztosan injektív. Injektív f inverze:

\mathrm{Dom}(f^{-1})=\mathrm{Ran}(f)\,
f^{-1}(y)=x,\quad f(x)=y\,

Később belátjuk, hogy intervallumon értelmezett injektív és folytonos függvény inverze folytonos. Intervallumon szigorú monotonitásból azonban még nem folytonos f esetén is következik az intervallumon folytonos inverz.

Állítás. Ha f: I \to R szigorúan monoton, akkor az inverze folytonos.

Ugyanis, Legyen f szig. mon. növő és v=f(u)-ban f-1 balról nem folytonos (ha nincs baloladala, akkor jobbról). Ekkor létezik Ran(f)∩(-&infty;,v]-ben olyan (yn) konvergens sorozat, mely v-hez tart, de f-1(yn)=xn nem tart u-hoz. Az inverz is szigorúan monoton növekvő, így megtartja a rendezés, azaz (xn) is (-&infty;,u]-ban halad. Korlátos is, mert min(yn) képe a képek egy alsó korlátja is lesz. Emiatt (xn)-nek a B--W-tétel miatt van

x_{n_k}\to \liminf(x_n)< u

konvergens részsorozata (ha liminf(xn) = u-lenne, akkor konvergens lenne!). Eszerint akkor egy liminf(xn) < w < u számra igaz, hogy a (w,u] intervallumban a részsoeozatnak csak véges sok tagja van, ahogy az (f(w),f(u)] intervallumban is csak véges sok képe. De ez ellentmond annak, hogy a részsorozat képe az u-hoz tart.

Példa. Folytonosan invertálható-e az alábbi függvény? Indokoljuk a fenti tétel nélkül!

f(x)=\left\{\begin{matrix}
-x^2-1, & \mathrm{ha} &  x<0\\
0, & \mathrm{ha} & x= 0\\
x^2+1, & \mathrm{ha} &  x>0
\end{matrix}\right.


Megoldás. Persze, hisz a negatívokon invertálható és csak negatív értéket vesz fel. A pozitívokon szintén és szintén csak pozitív értékeket vesz fel. A 0-beli érték az előző képhatlmazokon kívül esik (a 0). Az inverz:

\mathrm{Dom}\,f^{-1}=(-\infty,-1)\cup\{0\}\cup(1,+\infty)
f^{-1}(y)=\left\{\begin{matrix}
-\sqrt{-y-1}, & \mathrm{ha} &  y<-1\\
0, & \mathrm{ha} & y= 0\\
\sqrt{y-1}, & \mathrm{ha} &  y>1
\end{matrix}\right.

Ez a függvény mindenütt folytonos, mert a gyök az, és a 0-ban izolált pontja van, ahol a függvények triviálisan folytonosak.

Bolzano-tétel

Bolzano-tétel Intervallumon értelmezett, negatív és pozitív értékeket is felvevő folytonos függvénynek van zérushelye.

Állítás.

A feltételek nem hagyhatók el. Pl. sin periodikus és így nem injektív, bár folytonos. Pl. sgn(x)(|x|+1) szig. mon. nő, de nem folytonos.

Személyes eszközök