Matematika A2a 2008/2. gyakorlat
Mozo (vitalap | szerkesztései) (→Határérték) |
Mozo (vitalap | szerkesztései) (→Iterált határérték) |
||
28. sor: | 28. sor: | ||
b*) <math>\lim\limits_{x\to 0}\lim\limits_{y\to 0}\;(x+|x|)\cdot \sin\left(\textstyle{\frac{1}{y}}\right)=?,\qquad \lim\limits_{y\to 0}\lim\limits_{x\to 0}\;(x+|x|)\cdot \sin\left(\textstyle{\frac{1}{y}}\right)=?</math> | b*) <math>\lim\limits_{x\to 0}\lim\limits_{y\to 0}\;(x+|x|)\cdot \sin\left(\textstyle{\frac{1}{y}}\right)=?,\qquad \lim\limits_{y\to 0}\lim\limits_{x\to 0}\;(x+|x|)\cdot \sin\left(\textstyle{\frac{1}{y}}\right)=?</math> | ||
− | c) <math>\lim\limits_{x\to 0}\lim\limits_{y\to 0}\frac{xy^3}{x^4+y^4}=?,\qquad \lim\limits_{y\to 0}\lim\limits_{x\to 0}\frac{xy^3}{x^4+y^4}=?</math> | + | c) HF <math>\lim\limits_{x\to 0}\lim\limits_{y\to 0}\frac{xy^3}{x^4+y^4}=?,\qquad \lim\limits_{y\to 0}\lim\limits_{x\to 0}\frac{xy^3}{x^4+y^4}=?</math> |
MO. | MO. |
A lap 2017. február 12., 22:48-kori változata
- Ez az szócikk a Matematika A2a 2008 alszócikke.
Kétváltozós függvények szemléltetése
a)
b)
Ezek (x,y,z) koordinátarendszerbeli z=f(x,y) felülettel ábrázolva hengerszimmetrikusak, érdemes az
polárkoordináta transzformációval átírni, ebben a z-tengelytől mért távolság, és az első és második (majd a második és harmadik síknegyedben):
Innen: z körül körbeforgatott parabola (forgási paraboloid)
és
másodfokú hiperbola körbeforgatva.
Mindkettő szintvonalai körök.
b) h(x,y)=z=x-y egy sík egyenlete, szintvonalai: c=x-y, y=x-c egyenesek.
szintén egyenesek a szintvonalak:
.
Iterált határérték
a)
b*)
c) HF
MO.
a)
b)
Tehát g csak a nemnegatívokon értelmezett és ott 0:
*Feladat. a) Ha az iterált határértékek léteznek, de nem egyenlők, akkor a határérték nem létezik. b) Van olyan, hogy az iterált határérték nem létezik, de a határérték igen. c) Van olyan, hogy az iterált határértékek léteznek és egyenlők, de a határérték nem létezik.
Határérték
Def. Tegyük fel, hogy az függvény értelmezési tartományának (x0,y0) torlódási pontja. Azt mondjuk, hogy f-nek létezik határértéke az (x0,y0) pontban, és ez az A szám, ha
- minden ε>0-ra létezik δ>0, hogy
Ilyenkor -t vagy
-t írunk.
Rendőrelv Legyen és
. Ha van olyan δ>0, hogy minden
-ra
és és
, akkor
Határérték nem létezésének jellemzése. Tegyük fel, hogy az függvény értelmezési tartományának (x0,y0) torlódási pontja. f-nek nem létezik véges határértéke az (x0,y0) pontban, pontosan akkor, ha léteznek olyan
és
sorozatok, hogy
és
, de
vagy
nem konvergensek, vagy ha igen, akkor
.
1. gyakorlat | 3. gyakorlat |