Matematika A2a 2008/2. gyakorlat
- Ez az szócikk a Matematika A2a 2008 alszócikke.
Tartalomjegyzék |
Kétváltozós függvények szemléltetése
a)
b)
Ábrázoljuk őket a wolfram alfán:
[wolframalpha 3D Plots|http://www.wolframalpha.com/examples/PlottingAndGraphics.html]
Ezek (x,y,z) koordinátarendszerbeli z=f(x,y) felülettel ábrázolva hengerszimmetrikusak, érdemes az
polárkoordináta transzformációval átírni, ebben a z-tengelytől mért távolság, és az első és második (majd a második és harmadik síknegyedben):
Innen: z körül körbeforgatott parabola (forgási paraboloid)
és
másodfokú hiperbola körbeforgatva.
Mindkettő szintvonalai körök.
b) h(x,y)=z=x-y egy sík egyenlete, szintvonalai: c=x-y, y=x-c egyenesek.
szintén egyenesek a szintvonalak:
.
Határérték
Def. Tegyük fel, hogy az függvény értelmezési tartományának (x0,y0) torlódási pontja. Azt mondjuk, hogy f-nek létezik határértéke az (x0,y0) pontban, és ez az A szám, ha
- minden ε>0-ra létezik δ>0, hogy
Ilyenkor -t vagy
-t írunk.
Rendőrelv. Legyen és
. Ha van olyan δ>0, hogy minden
-ra
és és
, akkor
Határérték nem létezésének jellemzése. Tegyük fel, hogy az függvény értelmezési tartományának (x0,y0) torlódási pontja. f-nek nem létezik véges határértéke az (x0,y0) pontban, pontosan akkor, ha léteznek olyan
és
sorozatok, hogy
és
, de
vagy
nem konvergensek, vagy ha igen, akkor
.
Folytonosság. Legyen és
. Azt mondjuk, hogy f folytonos az (x0,y0) pontban, ha
- minden ε>0-ra létezik δ>0, hogy
Ha olyan, hogy
, akkor
pontosan akkor, ha
.
1. Hol létezik határértéke az
függvénynek? ("A félév függvénye.")
- Megoldás. Világos, hogy a polárkoordináta transzformációval az r kiesik és csak φ-től függ. Ezért érdemes a (0,0) pontot több irnyból, sugárirányba megközelíteni, általánosan az y = mx egyenes mentén:
- Vagyis m=0-ra ez 0-t, m=1-re ez 1/2-et ad. Eszerint nincs a (0,0)-ban határérték, mert van két különböző határértékű függvényértéksorozat, miközben a sorozatokkal a (0,0)-ba tartunk.
- Megoldás. Világos, hogy a polárkoordináta transzformációval az r kiesik és csak φ-től függ. Ezért érdemes a (0,0) pontot több irnyból, sugárirányba megközelíteni, általánosan az y = mx egyenes mentén:
2. Hol létezik határértéke az
függvénynek?
MO.: Mindenütt folytonos, ahol értelmezve van, de nincs hatérértéke másutt, ugyanis:
Polárkoordinátákra áttérve:
ami független r-től, tehát pl a (0,0)-beli határérték attól függ, hogy hogy közelítünk a 0-hoz.
3. Hol létezik határértéke az
függvénynek?
4. Hol létezik határértéke az
függvénynek? (Használjuk az , akkor
"rendőrelvet", ahol
, vagy vegyük észre a "félév függvényét".)
- 1. megoldás (polártranszf.). x = r
cos(φ), y = r
sin(φ):
- Ami 0-hoz tartó szor korlátos, amennyiben (x,y)
(0,0) ( (x,y) tart 0 esetén r tart a 0-hoz, a trigonometrikusak megmindenhogy nézve korlátosak), azaz a határérték 0.
- 2. megoldás (mértani-négyzetes közepek). |x||y|
(x2 + y2)/2. Emiatt:
- Ha (x,y)
(0,0), akkor persze |x|
0 és a többi tényező szorzata korlátos (éspedig -1/2 és 1/2 közötti), hiszen a hányados kisebb egyenlő 1. Ezért a határérték 0.
- 1. megoldás (polártranszf.). x = r
5. Hol létezik határértéke az
függvénynek? (Használjuk az "x2 = y4" trükköt! )
6. Mi a határértéke rögzített φ-re?
függvénynek?
7. Hol létezik határértéke az
függvénynek? (Vegyük észre a "félév függvényét", vagy írjuk fel a számtani és mértani közép közötti egyenlőtlenséget a nevező tagjaira.)
8. HF. Hol létezik határértéke az
függvénynek?
9. HF. Hol létezik határértéke az
függvénynek?
10. Hol létezik határértéke az
függvénynek? (Használjuk az határértéket.)
11. Hol létezik határértéke az
függvénynek?
IMSc Kiegészítés
Sorozatok konvergenciája normált térben
Azt mondjuk, hogy az (an) sorozat konvergens az (E, ||.||) normált térben és határértéke a u ∈ E pont, ha
Komponenssorozatok Rm-ben
(an):Z+ Rm akkor és csak akkor konvergens, ha komponenssorozatai konvergensek.
Ugyanis, ha konvergens, akkor a maximumnormában is konvergens, azaz ε > 0-hoz létezik N természetes szám, hogy minden n > N természetes számra
amiből következik, hogy minden n> N-re egyenként:
azaz mindegyik komponenessorozata konvergens.
Megfordítva. Tegyük fel, hogy tetszőleges ε > 0-ra léteznek { Ni} (i=1...m) természetes számok, hogy:
ha tehát N= max{Ni}, akkor minden n > N-re
azaz
-
,
azaz a sorozat a maximumnormában konvergál az A = ( A(1) , A(2), ... , A(m)) koordinátájú ponthoz, így az euklideszi normában is.
Példák
1. R2-ben.
Két hasznos dologot jegyezzünk meg:
Tétel Rm-ben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozza meg. (Tehát, mindegy melyiket használjuk, a nyílt, zárt halmazok topológiai fogalmak (innen pedig a konvergencia is) ugyanaz lesz.
2. B[a,b]-ben.
Legyen B[a,b] a korlátos és zárt [a,b] intervallumon értelmetezett korlátos függvények sorozata. Ebben a térben a távolságot a szuprémumnormából származtatjuk:
azaz gyakorlatilag a "legnagyobb függvényérték különbség". Ekkor egy pont, azaz egy függvény ε sugarú környezete egy 2ε vastag szimmetrikus sáv a függvény grafikonja körül.
2.1. B[-1000,+1000]-ben az
sorozat (függvénysorozat) konvergens a szuprémumnormában. Ezt az előadás alapján úgy fog nevezni, hogy egyenletesen konvergens.
2. B[-2,+2]-ben a páratlan gyökkitevőjű gyökfüggvények függvénysorozata
nem konvergens a szuprémumnormában(!). Az előadáson azt mondjuk majd, hogy nem egyenletesen konvergens. Viszont mint függvénysorozat pontonként konvergens lesz és a szignumfüggvényhez mint hatérfüggvényhez tart.
3.
Ez a korlátos sorozatok tere. Itt a
sorozatnak nincs konvergens részsorozata. Ez azért van, mert a sorozat bármely két különböző tagjának különbsége 1, így akárhogy is veszünk egy részsorozatát, az nem lesz Cauchy-sorozat, tehát konvergens sem lehet.
1. gyakorlat | 3. gyakorlat |