Matematika A2a 2008/3. gyakorlat

A MathWikiből
(Változatok közti eltérés)
a (2.)
(1.)
7. sor: 7. sor:
 
::'''1. megoldás''' (polártranszf.).  ''x'' = ''r''<math>\cdot</math>cos(&phi;), ''y'' = ''r''<math>\cdot</math>sin(&phi;):
 
::'''1. megoldás''' (polártranszf.).  ''x'' = ''r''<math>\cdot</math>cos(&phi;), ''y'' = ''r''<math>\cdot</math>sin(&phi;):
 
:::<math>f(x(r,\varphi),y(r,\varphi))=\frac{r^3\cos(\varphi)\sin(\varphi)}{r^2}=r\cdot\cos^2(\varphi)\sin(\varphi)</math>
 
:::<math>f(x(r,\varphi),y(r,\varphi))=\frac{r^3\cos(\varphi)\sin(\varphi)}{r^2}=r\cdot\cos^2(\varphi)\sin(\varphi)</math>
::Ami 0-hoz tartó szor korlátos, amennyiben (x,y) <math>\to</math> (0,0), azaz a határértkék 0.
+
::Ami 0-hoz tartó szor korlátos, amennyiben (x,y) <math>\to</math> (0,0) ( (x,y) tart 0 esetén r tart a 0-hoz, a trigonometrikusak megmindenhogy nézve korlátosak), azaz a határértkék 0.
 
::'''2. megoldás''' (mértani-négyzetes közepek).  |''x''||''y''| <math>\leq</math> (''x''<sup>2</sup> + ''y''<sup>2</sup>)/2. Továbbá ''x''<sup>2</sup> = |''x''||''x''| és ''y'' = |''y''|<math>\cdot</math>sgn(''y''), így  
 
::'''2. megoldás''' (mértani-négyzetes közepek).  |''x''||''y''| <math>\leq</math> (''x''<sup>2</sup> + ''y''<sup>2</sup>)/2. Továbbá ''x''<sup>2</sup> = |''x''||''x''| és ''y'' = |''y''|<math>\cdot</math>sgn(''y''), így  
 
:::<math>f(x,y)=\frac{1}{2}\mathrm{sgn}(y)|x|\frac{|x||y|}{\;\frac{x^2+y^2}{2}\;} </math>
 
:::<math>f(x,y)=\frac{1}{2}\mathrm{sgn}(y)|x|\frac{|x||y|}{\;\frac{x^2+y^2}{2}\;} </math>

A lap 2008. március 1., 18:38-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

Ezen a gyakorlaton konkrét függvények folytonosságát és határértékét vizsgáljuk meg.

Tartalomjegyzék

Határértékfeladatok

Van-e folytonos kiterjesztése az alábbi függvényeknek?

1.

f(x,y)=\frac{x^2y}{x^2+y^2}
1. megoldás (polártranszf.). x = r\cdotcos(φ), y = r\cdotsin(φ):
f(x(r,\varphi),y(r,\varphi))=\frac{r^3\cos(\varphi)\sin(\varphi)}{r^2}=r\cdot\cos^2(\varphi)\sin(\varphi)
Ami 0-hoz tartó szor korlátos, amennyiben (x,y) \to (0,0) ( (x,y) tart 0 esetén r tart a 0-hoz, a trigonometrikusak megmindenhogy nézve korlátosak), azaz a határértkék 0.
2. megoldás (mértani-négyzetes közepek). |x||y| \leq (x2 + y2)/2. Továbbá x2 = |x||x| és y = |y|\cdotsgn(y), így
f(x,y)=\frac{1}{2}\mathrm{sgn}(y)|x|\frac{|x||y|}{\;\frac{x^2+y^2}{2}\;}
Ha (x,y) \to (0,0), akkor persze |x| \to 0 és a többi tényező szorzata korlátos éspedig -1/2 és 1/2 közötti, hiszen a hányados kisebb egyenlő 1. Ezért a határérték 0.

2.

f(x,y)=\frac{\sin(x^2y)}{x^2+y^2}
Megoldás.
f(x,y)=\frac{\sin(x^2y)}{x^2y}\frac{x^2y}{x^2+y^2}
Innen pedig a sin(α)/α és az előző határérték miatt tart a 0-hoz.

3.

f(x,y)=\frac{xy}{x^2+y^2}
Megoldás. Világos, hogy a polárkoordináta transzformációval az r kiesik és csak φ-től függ. Ezért érdemes a (0,0) pontot több irnyból, sugárirányba megközelíteni, általánosan az y = mx egyenes mentén:
f(x,mx)=\frac{xmx}{x^2+m^2x^2}=\frac{m}{1+m^2}
Vagyis m=0-ra ez 0-t, m=1-re ez 1/2-et ad. Eszerint nincs a (0,0)-ban határérték, mert van két különböző határértékű függvényértéksorozat, miközben a sorozatokkal a (0,0)-ba tartunk.

4.

f(x,y)=\frac{\sin(xy)}{x^2+y^2}

5.

f(x,y)=\frac{x^2y}{\sqrt[5]{x^2+y^2}}

6.

f(x,y)=\frac{x^4y^3}{x^6+y^6}

7.

f(x,y)=\frac{x^4y^2}{x^6+y^6}

8.

f(x,y)=\frac{xy^2}{x^4+y^2}
(Először az x szorzó nélküli tényező korlátosságát igazoljuk!)

9.

f(x,y)=\frac{x^2y}{x^4+y^2}
Személyes eszközök