Matematika A2a 2008/4. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Lineáris leképezések)
1. sor: 1. sor:
 
:''Ez az szócikk a [[Matematika A2a 2008]] alszócikke.''
 
:''Ez az szócikk a [[Matematika A2a 2008]] alszócikke.''
 +
==Parciális deriváltak==
 +
 +
'''Definíció.''' Legyen  ''f'': '''R'''<sup>n</sup> <math>\supset\!\to</math> '''R''', ''u'' &isin; int Dom(''f''). Azt mondjuk, hogy f parciálisan differenciálható az ''u'' pontban a ''x''<sub>i</sub> változó szerint, ha az
 +
:<math>f(u_1,...,.,...,u_n): x_i\mapsto f(u_1,...x_i,...,u_n)\,</math>
 +
egyváltozós valós függvény differenciálható az u<sub>i</sub> pontban. Ekkor a fenti függvény <math>u_i</math>-beli deriváltját
 +
:<math>\partial_if(u),\quad f'_{x_i}(u),\quad f_{x_i}(u),\quad\left.\frac{\partial f}{\partial x_i}\right|_{x=u}</math>
 +
jelöli.
 +
 +
Példa:
 +
:<math>\frac{\partial x^2\cdot\sin(y)}{\partial x}=2x\cdot \sin(y)</math>
 +
:<math>\frac{\partial x^2\cdot\sin(y)}{\partial y}=x^2\cdot \cos(y)</math>
 +
:<math>\frac{\partial x^2\cdot\sin(y)}{\partial z}=0</math>
 +
 +
:<math>\frac{\partial \sin(\mathrm{sh}(x)y^2)}{\partial x}=\cos(\mathrm{sh}(x)y^2)\cdot \mathrm{ch}(x)y^2</math>
 +
 +
'''Feladat.''' Parciálisan deriválható-e az
 +
:<math>f(x,y)=\sqrt{x^2+y^2}</math>
 +
a (0,0)-ban?
 +
 +
'''Feladat.''' Parciálisan deriválható-e az
 +
:<math>f(x,y)=\left\{\begin{matrix}
 +
0,& \mbox{ ha }(x,y)=(0,0)\\
 +
(x^2+y)\sin\frac{1}{|x|+|y|},& \mbox{ ha }(x,y)\ne(0,0)
 +
\end{matrix}\right.</math>
 +
a (0,0)-ban?
 +
  
 
==Lineáris leképezések==
 
==Lineáris leképezések==

A lap 2013. szeptember 29., 10:14-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

Tartalomjegyzék

Parciális deriváltak

Definíció. Legyen f: Rn \supset\!\to R, u ∈ int Dom(f). Azt mondjuk, hogy f parciálisan differenciálható az u pontban a xi változó szerint, ha az

f(u_1,...,.,...,u_n): x_i\mapsto f(u_1,...x_i,...,u_n)\,

egyváltozós valós függvény differenciálható az ui pontban. Ekkor a fenti függvény ui-beli deriváltját

\partial_if(u),\quad f'_{x_i}(u),\quad f_{x_i}(u),\quad\left.\frac{\partial f}{\partial x_i}\right|_{x=u}

jelöli.

Példa:

\frac{\partial x^2\cdot\sin(y)}{\partial x}=2x\cdot \sin(y)
\frac{\partial x^2\cdot\sin(y)}{\partial y}=x^2\cdot \cos(y)
\frac{\partial x^2\cdot\sin(y)}{\partial z}=0
\frac{\partial \sin(\mathrm{sh}(x)y^2)}{\partial x}=\cos(\mathrm{sh}(x)y^2)\cdot \mathrm{ch}(x)y^2

Feladat. Parciálisan deriválható-e az

f(x,y)=\sqrt{x^2+y^2}

a (0,0)-ban?

Feladat. Parciálisan deriválható-e az

f(x,y)=\left\{\begin{matrix}
0,& \mbox{ ha }(x,y)=(0,0)\\
(x^2+y)\sin\frac{1}{|x|+|y|},& \mbox{ ha }(x,y)\ne(0,0)
\end{matrix}\right.

a (0,0)-ban?


Lineáris leképezések

A V1 és V2 vektorterek között ható A leképezést akkor nevezünk lineárisnak, ha teljesül minden λ, μ ∈ R és v, uV1

\mathcal{A}(\lambda.\mathbf{v}+\mu.\mathbf{u})=\lambda.\mathcal{A}\mathbf{v}+\mu.\mathcal{A}\mathbf{u}\,

A definícióból rögtön következik, hogy a nulla vektor képe nulla:

\mathcal{A}\mathbf{0}_{V_1}=\mathbf{0}_{V_2}

viszont más elem a V2 nem feltétlenül vétetik föl.

Véges dimenziós terek közti lineáris leképezés a bázis választásával egyértelműen jellemezhető az alábbi mátrixszal.

[\mathcal{A}]_{B,C} = \begin{bmatrix}
\begin{matrix}\vert \\ \vert \\ \mathcal{A}\mathbf{b}_1 \\ \vert \\ \vert \end{matrix}& \begin{matrix}\vert \\ \vert \\ \mathcal{A}\mathbf{b}_2 \\ \vert \\ \vert \end{matrix} & ... & \begin{matrix}\vert \\ \vert \\ \mathcal{A}\mathbf{b}_n \\ \vert \\ \vert \end{matrix} 
\end{bmatrix}

ahol B = (b1,b2,…,bn) a V1 egy bázisa, C az V2 bázisa, a mátrix oszlopai pedig a B elemeinek \mbox{ }_\mathcal{A} általi képvektoraiból, mint oszlopvektorokból áll. Ha \mbox{ }_\mathcal{A} V \rightarrow V típusú, akkor csak \mbox{ }_{[\mathcal{A}]_B}-t szokás írni, ha pedig pusztán \mbox{ }_{[\mathcal{A}]}-t írnak, akkor az azt jelenti, hogy a Rn sztenderd bázisáról van szó, azaz a

\mbox{ }_{\mbox{ }_{\begin{pmatrix}1\\0\\0\\ \vdots \\0 \end{pmatrix},\;\begin{pmatrix}0\\1\\0\\ \vdots \\0 \end{pmatrix},\;\begin{pmatrix}0\\0\\1\\ \vdots \\0 \end{pmatrix},\;\dots\;,\begin{pmatrix}0\\0\\0\\ \vdots \\1 \end{pmatrix}}}

vektorrendszerről.

Példák

1. Forgatás az origo körül φ szöggel:

[\mathcal{F}_\varphi]=\begin{bmatrix}\cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}

Világos, hogy ez invertálható leképezés és az inverze a -φ szögű forgatás.

2. Tükrözés a φ szőgű egyenesre.

[\mathcal{T}_\varphi]=\begin{bmatrix}\cos(2\varphi) & \sin(2\varphi) \\ \sin(2\varphi) & -\cos(2\varphi) \end{bmatrix}

Világos, hogy ez is invertálható és inverze saját maga.

Ezek ortogonális transzformációk, azaz a transzponáltjuk az inverzük. Speciálisan a tükrözés szimmetrikus leképezés, mert mátrixa szimmetrikus. Sőt, ezek alkotják a síkon az összes ortogonális transzformációt.

3. Deriváló operáció. Legyen V a legfeljebb másodfokú polinomfüggvények tere. Ekkor a

\mathcal{D}:f\mapsto f'\,

lineáris leképezés:

Bázis V-ben: {1, x, x2}, ezért a mátrixa:

[\mathcal{D}]=
\begin{bmatrix} 
 0 & 1 & 0 \\
 0 & 0 & 2\\
 0 & 0 & 0 
\end{bmatrix}

Világos, hogy a leképezés képzere nem a teljes V, hanem annak egy altere (a legfeljebb elsőfokú polinomfüggvények tere) és nem csak a 0 polinom képe 0, hanem minden konstans polinomé.

Lineáris leképezések folytonossága

Megjegyzés. A normált terek között ható A lineáris leképezés folytonos, ha a 0-ban folytonos.

Ugyanis, legyen az A: N1 \to N2 lineáris leképezés és tegyük fel, hogy 0-ban folytonos, azaz minden ε>0-ra létezik δ>0, hogy minden x ∈ Bδ(0)-ra Ax ∈ Bε(0).

Most ha ε > 0 tetszőleges és x1 és x2 N1-beliek is tetszőlegesek, akkor

||\mathcal{A}x_1-\mathcal{A}x_2||=||\mathcal{A}(x_1-x_2)||\leq\varepsilon

amennyiben x1-x2 ∈ Bδ(0), ahol δ a 0-beli folytonosság által az ε-hoz tartozó δ.

Tétel. A : Rn \to Rm lineáris leképzés folytonos, sőt:

\exists L\geq 0\quad\forall x\in \mathbf{R}^n\quad||\mathcal{A}(x)||\leq L||x||

Megjegyzés. Ez azt is jelenti, hogy egy ilyen leképezés Lipschitz-függvény. Az f: Rn\to Rm függvényt Lipschitz-függvénynek nevezük, ha létezik L nemnegatív szám, hogy minden x1 és x2 Dom(f)-belire:

||f(x_1)-f(x_2)||\leq L||x_1-x_2||

Világos, hogy ez lineáris leképezésre ekvivalens a tételbeli megfogalmazással.

Ha lipschitzes, akkor pedig folytonos, mert ekkor δ=ε/(L+1)-gyel

|f(x)-f(0)|\leq L|x|<L\delta=L\frac{\varepsilon}{L+1}<\varepsilon.


Bizonyítás. Vegyük az A sztenderd bázis beli mátrixát. Ekkor A(x)=A\cdotx. Így A minden Ai sorára

|\mathbf{A}_i\mathbf{x}|=|\sum\limits_{j=1}^{n}\mathbf{A}_{ij}x_j|\leq\sum\limits_{j=1}^{n}|\mathbf{A}_{ij}x_j| \leq L_i\sum\limits_{j=1}^{n}|x_j|

ahol Li rögzített i mellett a {|Ai,j|} j=1...n számok maximuma. Ha most vesszük L = max {Li}-t is, akkor

||\mathcal{A}\mathbf{x}||_\max=\max_{i=1...m}|\mathbf{A}_i\mathbf{x}|\leq L\sum\limits_{j=1}^{n}|x_j|=L\cdot ||\mathbf{x}||_{p=1}

is teljesül, azaz a kép maximumnormája felülbecsülhető L-szer a vektor norma-1 szerinti normájával. A normák ekvivalenciája miat pedig alkalmas L-re minden normára igaz.

Operátornorma

A lineáris leképezések Lin(Rn,Rm) tere normált tér, ugyanis vegyük a következő számot:

||\mathcal{A}||_{op}=_{\mathrm{def}}\sup_{\mathbf{x}\ne 0}\frac{||\mathcal{A}\mathbf{x}||}{||\mathbf{x}||}=\sup_{||\mathbf{x}||=1}||\mathcal{A}\mathbf{x}||

Ez létezik, mivel x \mapsto ||Ax|| folytonos a kompakt 0 középpontú, egységsugarú gömbfelületen.

Differenciálhatóság

A többváltozós differenciálhatóságot az egyváltozós alábbi átfogalmazásából általánosítjuk:

\lim\limits_{x\to u}\frac{f(x)-f(u)-m(x-u)}{|x-u|}=0
\lim\limits_{x\to u+}\frac{f(x)-f(u)-m(x-u)}{x-u}=0\quad\wedge\quad\lim\limits_{x\to u-}\frac{f(x)-f(u)-m(x-u)}{-(x-u)}=0
\lim\limits_{x\to u+}\left(\frac{f(x)-f(u)}{x-u}-m\right)=0,\quad\wedge\quad\lim\limits_{x\to u-}-\left(\frac{f(x)-f(u)}{x-u}-m\right)=0
\lim\limits_{x\to u+}\frac{f(x)-f(u)}{x-u}=m,\quad\wedge\quad\lim\limits_{x\to u-}-\frac{f(x)-f(u)}{x-u}=-m
\lim\limits_{x\to u}\frac{f(x)-f(u)}{x-u}=m


Definíció. Legyen f: Rn \supset\!\longrightarrow Rm és u ∈ int Dom(f). Azt mondjuk, hogy f differenciálható az u pontban, ha létezik olyan A: Rn \to Rm lineáris leképezés, hogy

\lim\limits_{x\to u}\frac{f(x)-f(u)-\mathcal{A}(x-u)}{||x-u||_{\mathbf{R}^n}}=0_{\mathbf{R}^m}

Ekkor A egyértelmű és az f leképezés u-bent beli differenciáljának nevezzük és df(u)-val vagy Df(u)-val jelöljük. Ezt a fogalmat néha teljes differenciálnak, totális differenciálnak vagy Fréchet-deriváltnak is mondjuk.

Megjegyzés. A fenti határérték 0 volta egyenértékű a következő kijelentéssel. Létezik A: Rn \to Rm lineáris leképezés és ε: Dom(f) \to Rm függvény, melyre:

ε folytonos u-ban és ε(u)=0, továbbá

minden x ∈ Dom(f)-re:

f(x)=f(u)+\mathcal{A}(x-u)+\varepsilon(x)||x-u||

Megjegyzés. Azt, hogy A egyértelmű, a következőkkel bizonyíthatjuk. Legyen A és B is a mondott tulajdonságú, azaz létezzenek ε és η az u-ban eltűnő és ott folytonos Dom(f)-en értelmezett függvények, melyekre teljesül, hogy minden x ∈ Dom(f)-re

f(x)=f(u)+\mathcal{A}(x-u)+\varepsilon(x)||x-u||
f(x)=f(u)+\mathcal{B}(x-u)+\eta(x)||x-u||

ezeket kivonva egymásból és használva minden x-re:

(\mathcal{A}-\mathcal{B})(x-u)+(\varepsilon(x)-\eta(x))||x-u||=0

így minden x = u + ty értékre is az azonosan nullát kapjuk, ha t pozitív szám, y pedig rögzített nemnulla vektor, azaz minden t-re

(\mathcal{A}-\mathcal{B})ty+(\varepsilon(u+ty)-\eta(u+ty))||ty||=0

az azonosan 0 függény határértéke t\to 0 esetén szintén nulla:

 0=\lim\limits_{t\to 0}\frac{(\mathcal{A}-\mathcal{B})(ty)+(\varepsilon(u+ty)-\eta(u+ty))||ty||}{t}=(\mathcal{A}-\mathcal{B})y

hiszen t-t kiemelhetünk és egyszerűsíthetünk és t\to 0 esetén ε és η nullává válik. Ez viszont pont azt jelenti, hogy a két lineéris operátor azonosan egyenlő.

Jacobi-mátrix

A df(u) lineáris leképezés (e1,e2,...,en) szetenderd bázisbeli mátrixa legyen: [df(u)] = A. Vizsgáljuk mibe viszi a bázisokat df(u) leképezés!

Írjuk fel a definíciót, de az e1 egységvektor mentén tartsunk u-hoz: x = u + te1. Ekkor

x-u=te_1\,

ami azért hasznos, mert a

\mathcal{A}(x-u)=\mathcal{A}(te_1)\,

alakból kiemelhetó t:

0=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)-\mathcal{A}(te_1)}{t}=
=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)-t.\mathcal{A}(e_1)}{t}=
=-\mathcal{A}(e_1)+\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)}{t}

azaz

\mathcal{A}(e_1)=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)}{t}=\partial_1 f(u)

vagyis f koordinátafüggvényeinek az első változó szerinti parciális deriváltja az u pontban. A többi oszlopvektor ugyanígy:

[\mathrm{d}f(u)]=\mathbf{J}^f(u)=\begin{bmatrix}
\partial_1 f_1(u) & \partial_2 f_1(u) & \dots & \partial_n f_1(u)\\
\partial_1 f_2(u) & \partial_2 f_2(u) & \dots & \partial_n f_2(u)\\
\vdots            &     \vdots        &   \ddots    & \vdots \\
\partial_1 f_m(u) & \partial_2 f_m(u) & \dots & \partial_n f_m(u)\\
\end{bmatrix}

amelyet Jacobi-mátrixnak nevezünk.

Következmény. Tehát. ha f totálisan differenciálható, akkor parciálisan is differenciálható és a differenciál sztenderd bázisbeli mátrixa a Jacobi-mátrix.

Azaz:

teljes differenciálhatóság \Longrightarrow parciális differenciálhatóság

de ez fordítva már nem igaz:

parciális differenciálhatóság \not\Rightarrow teljes differenciálhatóság

Erre vonatkozik a két alábbi példa.




pótló gyakorlat 5. gyakorlat
Személyes eszközök