Matematika A2a 2008/5. gyakorlat

A MathWikiből
(Változatok közti eltérés)
 
(egy szerkesztő egy közbeeső változata nincs mutatva)
62. sor: 62. sor:
  
  
==Folytonosság és totális differenciálhatóság==
 
Tekintsük az
 
:<math>g(x,y)=\left\{\begin{matrix}\begin{pmatrix}\frac{xy}{x^2+y^2}\\ x+y\end{pmatrix}& \mbox{, ha }&(x,y)\ne (0,0)\\
 
\begin{pmatrix}0\\ 0\end{pmatrix}&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.</math>
 
Ekkor
 
:<math>J^g(0,0)=\begin{pmatrix}0 & 0\\
 
1 & 1\end{pmatrix}</math>
 
Viszont g nem totálisan diffható, mert a (t,t) mentén a (0,0)-ba tartva:
 
:<math>\lim\limits_{t\to 0}\frac{g(t,t)-g(0,0)-J^g(0,0)\cdot(t,t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}\frac{(\frac{1}{2},2t)-(0,t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}\frac{(\frac{1}{2},t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}(\frac{1}{\sqrt{2}2|t|},\frac{t}{\sqrt{2}|t|})</math>
 
ami nem létezik.
 
  
'''Megjegyzés.''' Itt persze g nem folytonos, és itt is igaz az, hogy ha totálisan differenciálható egy függvény, akkor folytonos is:
 
  
 +
<center>
 +
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
||[[Matematika A2a 2008/4. gyakorlat |4. gyakorlat]] || [[Matematika A2a 2008/6. gyakorlat |6. gyakorlat]]
 +
|}
 +
</center>
  
 
[[Kategória:Matematika A2]]
 
[[Kategória:Matematika A2]]

A lap jelenlegi, 2013. október 21., 11:44-kori változata

Differenciálhatóság

A többváltozós differenciálhatóságot az egyváltozós alábbi átfogalmazásából általánosítjuk:

\lim\limits_{x\to u}\frac{f(x)-f(u)-m(x-u)}{|x-u|}=0
\lim\limits_{x\to u+}\frac{f(x)-f(u)-m(x-u)}{x-u}=0\quad\wedge\quad\lim\limits_{x\to u-}\frac{f(x)-f(u)-m(x-u)}{-(x-u)}=0
\lim\limits_{x\to u+}\left(\frac{f(x)-f(u)}{x-u}-m\right)=0,\quad\wedge\quad\lim\limits_{x\to u-}-\left(\frac{f(x)-f(u)}{x-u}-m\right)=0
\lim\limits_{x\to u+}\frac{f(x)-f(u)}{x-u}=m,\quad\wedge\quad\lim\limits_{x\to u-}-\frac{f(x)-f(u)}{x-u}=-m
\lim\limits_{x\to u}\frac{f(x)-f(u)}{x-u}=m


Definíció. Legyen f: Rn \supset\!\longrightarrow Rm és u ∈ int Dom(f). Azt mondjuk, hogy f differenciálható az u pontban, ha létezik olyan A: Rn \to Rm lineáris leképezés, hogy

\lim\limits_{x\to u}\frac{f(x)-f(u)-\mathcal{A}(x-u)}{||x-u||_{\mathbf{R}^n}}=0_{\mathbf{R}^m}

Ekkor A egyértelmű és az f leképezés u-bent beli differenciáljának nevezzük és df(u)-val vagy Df(u)-val jelöljük. Ezt a fogalmat néha teljes differenciálnak, totális differenciálnak vagy Fréchet-deriváltnak is mondjuk.

Megjegyzés. A fenti határérték 0 volta egyenértékű a következő kijelentéssel. Létezik A: Rn \to Rm lineáris leképezés és ε: Dom(f) \to Rm függvény, melyre:

ε folytonos u-ban és ε(u)=0, továbbá

minden x ∈ Dom(f)-re:

f(x)=f(u)+\mathcal{A}(x-u)+\varepsilon(x)||x-u||

Megjegyzés. Azt, hogy A egyértelmű, a következőkkel bizonyíthatjuk. Legyen A és B is a mondott tulajdonságú, azaz létezzenek ε és η az u-ban eltűnő és ott folytonos Dom(f)-en értelmezett függvények, melyekre teljesül, hogy minden x ∈ Dom(f)-re

f(x)=f(u)+\mathcal{A}(x-u)+\varepsilon(x)||x-u||
f(x)=f(u)+\mathcal{B}(x-u)+\eta(x)||x-u||

ezeket kivonva egymásból és használva minden x-re:

(\mathcal{A}-\mathcal{B})(x-u)+(\varepsilon(x)-\eta(x))||x-u||=0

így minden x = u + ty értékre is az azonosan nullát kapjuk, ha t pozitív szám, y pedig rögzített nemnulla vektor, azaz minden t-re

(\mathcal{A}-\mathcal{B})ty+(\varepsilon(u+ty)-\eta(u+ty))||ty||=0

az azonosan 0 függény határértéke t\to 0 esetén szintén nulla:

 0=\lim\limits_{t\to 0}\frac{(\mathcal{A}-\mathcal{B})(ty)+(\varepsilon(u+ty)-\eta(u+ty))||ty||}{t}=(\mathcal{A}-\mathcal{B})y

hiszen t-t kiemelhetünk és egyszerűsíthetünk és t\to 0 esetén ε és η nullává válik. Ez viszont pont azt jelenti, hogy a két lineéris operátor azonosan egyenlő.

Jacobi-mátrix

A df(u) lineáris leképezés (e1,e2,...,en) szetenderd bázisbeli mátrixa legyen: [df(u)] = A. Vizsgáljuk mibe viszi a bázisokat df(u) leképezés!

Írjuk fel a definíciót, de az e1 egységvektor mentén tartsunk u-hoz: x = u + te1. Ekkor

x-u=te_1\,

ami azért hasznos, mert a

\mathcal{A}(x-u)=\mathcal{A}(te_1)\,

alakból kiemelhetó t:

0=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)-\mathcal{A}(te_1)}{t}=
=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)-t.\mathcal{A}(e_1)}{t}=
=-\mathcal{A}(e_1)+\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)}{t}

azaz

\mathcal{A}(e_1)=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)}{t}=\partial_1 f(u)

vagyis f koordinátafüggvényeinek az első változó szerinti parciális deriváltja az u pontban. A többi oszlopvektor ugyanígy:

[\mathrm{d}f(u)]=\mathbf{J}^f(u)=\begin{bmatrix}
\partial_1 f_1(u) & \partial_2 f_1(u) & \dots & \partial_n f_1(u)\\
\partial_1 f_2(u) & \partial_2 f_2(u) & \dots & \partial_n f_2(u)\\
\vdots            &     \vdots        &   \ddots    & \vdots \\
\partial_1 f_m(u) & \partial_2 f_m(u) & \dots & \partial_n f_m(u)\\
\end{bmatrix}

amelyet Jacobi-mátrixnak nevezünk.

Következmény. Tehát. ha f totálisan differenciálható, akkor parciálisan is differenciálható és a differenciál sztenderd bázisbeli mátrixa a Jacobi-mátrix.

Azaz:

teljes differenciálhatóság \Longrightarrow parciális differenciálhatóság

de ez fordítva már nem igaz:

parciális differenciálhatóság \not\Rightarrow teljes differenciálhatóság

Erre vonatkozik a két alábbi példa.



4. gyakorlat 6. gyakorlat
Személyes eszközök