Matematika A2a 2008/5. gyakorlat

A MathWikiből
(Változatok közti eltérés)
a (Lineáris és affin függvény deriváltja)
(A differenciálás tulajdonságai)
17. sor: 17. sor:
  
 
===Függvények lineáris kombinációja===
 
===Függvények lineáris kombinációja===
 +
Ha ''f'' és ''g'' a ''H'' &sube; '''R'''<sup>n</sup> halmazon értelmezett '''R'''<sup>m</sup>-be képező, az ''u'' &isin; ''H''-ban differenciálható függvények, akkor minden &lambda; számra
 +
:<math>\lambda.f\,</math>  is differenciálható ''u''-ban és <math>\mathrm{d}(\lambda.f)(u)=\lambda.\mathrm{d}f(u)\,</math> és
 +
:<math>f+g\,</math> is differenciálható ''u''-ban és <math>\mathrm{d}(f+g)(u)=\mathrm{d}f(u)+\mathrm{d}g(u)\,</math>
 +
''Ugyanis,'' a mondott differenciálokkal és a
 +
:<math>\varepsilon_{\lambda.f}=\lambda.\varepsilon_{f}\,</math>
 +
:<math>\varepsilon_{f+g}=\varepsilon_{f}+\varepsilon_{g}\,</math>
 +
választással, ezek az ''u''-ban folytonosak lesznek és a lineáris résszekel együtt ezek előállítják a skalárszoros és összegfüggvények megváltozásait.
 +
 +
  
  

A lap 2008. március 15., 13:31-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

A differenciálás tulajdonságai

Lineáris és affin függvény deriváltja

Az A : Rn \to Rm lineáris leképezés differenciálható és differenciálja minden pontban saját maga.

Ugyanis, legyen uRn. Ekkor

\lim\limits_{x\to u}\frac{\mathcal{A}(x)-\mathcal{A}(u)-\mathcal{A}(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

c konstans függény esetén az dc(u) \equiv 0 alkalmas differenciálnak, mert

\lim\limits_{x\to u}\frac{c-c-0\cdot(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

így világos, hogy c + A alakú affin függvények is differenciálhatóak, és differenciáljuk minden pontban az az A lineáris leképezés, melynek eltolásából az affin származik. Ezt szintén behelyettesítéssel ellenőrizhetjük.

Tehát minden uRn-re

\mathrm{d}\mathcal{A}(u)=\mathcal{A},\quad\quad\mathrm{d}c(u)\equiv 0,\quad\quad\mathrm{d}(b+\mathcal{A}\circ(id-a))(u)=\mathcal{A}

Függvények lineáris kombinációja

Ha f és g a HRn halmazon értelmezett Rm-be képező, az uH-ban differenciálható függvények, akkor minden λ számra

\lambda.f\, is differenciálható u-ban és \mathrm{d}(\lambda.f)(u)=\lambda.\mathrm{d}f(u)\, és
f+g\, is differenciálható u-ban és \mathrm{d}(f+g)(u)=\mathrm{d}f(u)+\mathrm{d}g(u)\,

Ugyanis, a mondott differenciálokkal és a

\varepsilon_{\lambda.f}=\lambda.\varepsilon_{f}\,
\varepsilon_{f+g}=\varepsilon_{f}+\varepsilon_{g}\,

választással, ezek az u-ban folytonosak lesznek és a lineáris résszekel együtt ezek előállítják a skalárszoros és összegfüggvények megváltozásait.



4. gyakorlat 6. gyakorlat
Személyes eszközök