Matematika A2a 2008/5. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Skalárral való szorzás)
68. sor: 68. sor:
 
illetve a gradiens:
 
illetve a gradiens:
 
:<math>\mathrm{grad}\,|\mathbf{r}|^\alpha=\alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}</math>
 
:<math>\mathrm{grad}\,|\mathbf{r}|^\alpha=\alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}</math>
 +
==Teljes és parciális differenciálhatóság==
 +
Ha az ''f'':'''R'''<sup>n</sup> &sup;<math>\to</math> '''R'''<sup>m</sup> függvény differenciálható az ''u'' pontban, akkor ott minden parciális deriváltja létezik és teljesül:
 +
:<math>[(df(u))e_j]_i=\partial_j f_i(u)\,</math>
 +
ahol <math>e_j</math> a j-edik szetenderd bázisvektor, <math> [.]_i</math> pedig az i-edik komponenst jelenti sztenderd bázisban.
 +
 +
Ez az ellenkező irányban nem következik. Ez majdnem nyilvánvaló, de csak tekintsük az
 +
:<math>f(x,y)=\left\{\begin{matrix}\frac{xy}{x^2+y^2}& \mbox{, ha }&(x,y)\ne (0,0)\\
 +
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.</math>
 +
:<gnuplot>
 +
set pm3d
 +
set size 0.8,0.8
 +
set xrange [-1:1]
 +
set yrange [-1:1]
 +
set zrange [-2:2]
 +
set view 50,30,1,1
 +
unset xtics
 +
unset ytics
 +
unset ztics
 +
unset key
 +
unset colorbox
 +
splot x*y/(x*x+y*y)
 +
</gnuplot>
 +
(0,0)-ban a parciális függvények az azonosan 0 függvény, mely persze deriválható a 0-ban, de a függvény még csak nem is folytonos (0,0)-ban, mely szükséges feltétele a teljes differenciálhatóságnak.
 +
 +
Egy másik, folytonos példa az
 +
:<math>f(x,y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^2+y^2}}& \mbox{, ha }&(x,y)\ne (0,0)\\
 +
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.</math>
 +
:<gnuplot>
 +
set pm3d
 +
set size 0.8,0.8
 +
set xrange [-1:1]
 +
set yrange [-1:1]
 +
set zrange [-2:2]
 +
set view 50,30,1,1
 +
unset xtics
 +
unset ytics
 +
unset ztics
 +
unset key
 +
unset colorbox
 +
splot x*y/(sqrt(x*x+y*y))
 +
</gnuplot>
 +
Ekkor az iránymenti deriváltakat kell vizsgálnunk. Ha van differenciál a (0,0)-ban, akkor az csak az azonosan nulla leképezés lehet a parciális deriváltak miatt. Ám, polárkoordinátákra áttérve:
 +
:<math>f(x(r,\varphi),y(r,\varphi))=\frac{r^2\cos\varphi\sin\varphi}{r}=r\cos\varphi\sin\varphi=r\cdot \frac{1}{2}\sin 2\varphi</math>
 +
&phi; = &pi;/4-et és &pi; + &pi;/4-et véve a vetületfüggvény a
 +
:<math>t\mapsto\frac{1}{2}|t|</math>,
 +
ami nem differenciálható a 0-ban.
 +
 +
Megfordításról a következő esetben beszélhetünk.
 +
 +
'''Tétel.''' Ha az ''f'':'''R'''<sup>n</sup> &sup;<math>\to</math> '''R'''<sup>m</sup> függvény minden parciális deriváltfüggvénye folytonos az ''u'' pont egy környezetében, akkor ''u''-ban ''f'' differenciálható.
 +
 +
''Bizonyítás.'' Elegendő az m = 1 esetet vizsgálni. Továbbá a bizonyítás elve nem változik, ha csak az n = 2 esetet vesszük. Legyen x az u mondott környezetéből vett pont, és x=(<math>x_1</math>,<math>x_2</math>), v=(<math>u_1</math>,<math>x_2</math>), u=(<math>u_1</math>,<math>u_2</math>)
 +
:<math>f(x)-f(u)=f(x)-f(v)+f(v)-f(u)= \partial_1 f(v)(x_1-u_1)+\varepsilon_v(x_1)|x_1-x_2|+\partial_2 f(u)(x_2-u_2)+\varepsilon_u(x_2)|x_2-u_2|=</math>
 +
:<math>=\partial_1 f(v)(x_1-u_1)-\partial_1 f(u)(x_1-u_1)+\partial_1 f(u)(x_1-u_1)+\varepsilon_v(x_1)|x_1-x_2|+\partial_2 f(u)(x_2-u_2)+\varepsilon_u(x_2)|x_2-u_2|=</math>
 +
:<math>=\partial_1 f(v)(x_1-u_1)-\partial_1 f(u)(x_1-u_1)+\partial_1 f(u)(x_1-u_1)+\varepsilon_v(x_1)|x_1-x_2|+\partial_2 f(u)(x_2-u_2)+\varepsilon_u(x_2)|x_2-u_2|</math>
 +
 +
 
===Szorzatok differenciálja===
 
===Szorzatok differenciálja===
 
Most csak a sokféle szorzat deriváltjának értékét számítjuk ki. Minden esetben igazolható, hogy ha a formulákban szereplő összes derivált létezik, akkor a formula érvényes (sőt, ha a függvények az adott pontban differenciálhatók, akkor a szorzat is differenciálható az adott pontban). Az mátrixelemeket indexesen számítjuk.
 
Most csak a sokféle szorzat deriváltjának értékét számítjuk ki. Minden esetben igazolható, hogy ha a formulákban szereplő összes derivált létezik, akkor a formula érvényes (sőt, ha a függvények az adott pontban differenciálhatók, akkor a szorzat is differenciálható az adott pontban). Az mátrixelemeket indexesen számítjuk.

A lap 2008. március 16., 22:01-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

Tartalomjegyzék

A differenciálás tulajdonságai

Lineáris és affin függvény deriváltja

Az A : Rn \to Rm lineáris leképezés differenciálható és differenciálja minden pontban saját maga.

Ugyanis, legyen uRn. Ekkor

\lim\limits_{x\to u}\frac{\mathcal{A}(x)-\mathcal{A}(u)-\mathcal{A}(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

c konstans függény esetén az dc(u) \equiv 0 alkalmas differenciálnak, mert

\lim\limits_{x\to u}\frac{c-c-0\cdot(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

így világos, hogy c + A alakú affin függvények is differenciálhatóak, és differenciáljuk minden pontban az az A lineáris leképezés, melynek eltolásából az affin származik. Ezt szintén behelyettesítéssel ellenőrizhetjük.

Tehát minden uRn-re

\mathrm{d}\mathcal{A}(u)=\mathcal{A},\quad\quad\mathrm{d}c(u)\equiv 0,\quad\quad\mathrm{d}(b+\mathcal{A}\circ(id-a))(u)=\mathcal{A}

Példa.

Az A: x \mapsto 2x1 + 3x2 - 4x3 lineáris leképezés differenciálja az u pontban az u-tól független

(\mathrm{d}\mathcal{A}(\mathbf{u}))(x_1,x_2,x_3)=2x_1+3x_2-4x_3\,

és Jacobi-mátrixa a konstans

\mathbf{J}^\mathcal{A}(\mathbf{u})=\begin{bmatrix}2 & 3 & -4\end{bmatrix}

mátrix.

Világos, hogy a

\mathrm{pr}_i:(x_1,x_2,...,x_i,...,x_n)\mapsto x_i

koordináta vagy projekciófüggvény lineáris, differenciálja minden u pontban saját maga és ennek mátrixa:

[\mathrm{grad}\,\mathrm{pr_i}]=\mathbf{J}^{\mathrm{pr}_i}(\mathbf{u})=\begin{bmatrix}0 & 0 & ... & 1 & ...& 0\end{bmatrix}

ahol az 1 az i-edik helyen áll. Másként

\partial_kx_i=\delta_{ki}

ahol

\delta_{ij}=\left\{\begin{matrix}1, \mbox{ ha }i=j\\0, \mbox{ ha }i\ne j \end{matrix}\right.

azaz a Kronecker-féle δ szimbólum.

Függvények lineáris kombinációja

Ha f és g a HRn halmazon értelmezett Rm-be képező, az uH-ban differenciálható függvények, akkor minden λ számra

\lambda.f\, is differenciálható u-ban és \mathrm{d}(\lambda.f)(u)=\lambda.\mathrm{d}f(u)\, és
f+g\, is differenciálható u-ban és \mathrm{d}(f+g)(u)=\mathrm{d}f(u)+\mathrm{d}g(u)\,

Ugyanis, a mondott differenciálokkal és a

\varepsilon_{\lambda.f}=\lambda.\varepsilon_{f}\,
\varepsilon_{f+g}=\varepsilon_{f}+\varepsilon_{g}\,

választással, ezek az u-ban folytonosak lesznek és a lineáris résszekel együtt ezek előállítják a skalárszoros és összegfüggvények megváltozásait.

Függvénykompozíció differenciálja

Tétel. Legyen g: Rn\to Rm, az u-ban differenciálható, f: Rm\to Rk a g(u)-ban differenciálható függvény, u ∈ int Dom(f \circ g). Ekkor az

f\circ g differenciálható u-ban és
 \mathrm{d}(f\circ g)(u)=\mathrm{d}f(g(u))\circ\mathrm{d}g(u)

Bizonyítás. Alkalmas ε, A és η B párral, minden x ∈ Dom(f \circ g)-re:

f(g(x))=f(g(u))+\mathcal{A}(g(x)-g(u))+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+\mathcal{A}(\mathcal{B}(x-u)+\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+\mathcal{A}(\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+(\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||)||x-u||

Innen leolvasható a differenciál és a másodrendben eltűnő mennyiség vektortényezője, az

\varepsilon_{f\circ g}(x)=\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||

melyben az első tag a 0-hoz tart, mivel a lineáris leképezés a 0-ban folytonos, és η a 0-hoz tart az u-ban. A második tag nulla szor korlátos alakú, hiszen a lineáris leképezés Lipschitz-tuladonsága folytán B minden egységvektoron korlátos értéket vesz fel.

Példa.

\Phi(\mathbf{r})=|\mathbf{r}|=\sqrt{\mathbf{r}^2}

Mivel a gyökfüggvény nem differenciálható a 0-ban, ezért a differenciál csak nemnulla r-re számítható ki:

\mathrm{d}\Phi(\mathbf{r}):\mathbf{x}\mapsto \frac{1}{2\sqrt{\mathbf{r}^2}}.2\mathbf{r}\cdot\mathbf{x}=\frac{\mathbf{r}}{|\mathbf{r}|}\cdot\mathbf{x}

illetve a gradiens:

\mathrm{grad}\,|\mathbf{r}|=\frac{\mathbf{r}}{|\mathbf{r}|}

Szemléleti okokból lényeges, hogy itt . a skalárral való szorzás, \cdot a skaláris szorzás.

\Psi(\mathbf{r})=|\mathbf{r}|^{\alpha}
\mathrm{d}\Psi(\mathbf{r}):\mathbf{x}\mapsto \alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}\cdot\mathbf{x}

illetve a gradiens:

\mathrm{grad}\,|\mathbf{r}|^\alpha=\alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}

Teljes és parciális differenciálhatóság

Ha az f:Rn\to Rm függvény differenciálható az u pontban, akkor ott minden parciális deriváltja létezik és teljesül:

[(df(u))e_j]_i=\partial_j f_i(u)\,

ahol ej a j-edik szetenderd bázisvektor, [.]i pedig az i-edik komponenst jelenti sztenderd bázisban.

Ez az ellenkező irányban nem következik. Ez majdnem nyilvánvaló, de csak tekintsük az

f(x,y)=\left\{\begin{matrix}\frac{xy}{x^2+y^2}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.
 set pm3d
set size 0.8,0.8 set xrange [-1:1] set yrange [-1:1] set zrange [-2:2] set view 50,30,1,1 unset xtics unset ytics unset ztics unset key unset colorbox splot x*y/(x*x+y*y)

(0,0)-ban a parciális függvények az azonosan 0 függvény, mely persze deriválható a 0-ban, de a függvény még csak nem is folytonos (0,0)-ban, mely szükséges feltétele a teljes differenciálhatóságnak.

Egy másik, folytonos példa az

f(x,y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^2+y^2}}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.
 set pm3d
set size 0.8,0.8 set xrange [-1:1] set yrange [-1:1] set zrange [-2:2] set view 50,30,1,1 unset xtics unset ytics unset ztics unset key unset colorbox splot x*y/(sqrt(x*x+y*y))

Ekkor az iránymenti deriváltakat kell vizsgálnunk. Ha van differenciál a (0,0)-ban, akkor az csak az azonosan nulla leképezés lehet a parciális deriváltak miatt. Ám, polárkoordinátákra áttérve:

f(x(r,\varphi),y(r,\varphi))=\frac{r^2\cos\varphi\sin\varphi}{r}=r\cos\varphi\sin\varphi=r\cdot \frac{1}{2}\sin 2\varphi

φ = π/4-et és π + π/4-et véve a vetületfüggvény a

t\mapsto\frac{1}{2}|t|,

ami nem differenciálható a 0-ban.

Megfordításról a következő esetben beszélhetünk.

Tétel. Ha az f:Rn\to Rm függvény minden parciális deriváltfüggvénye folytonos az u pont egy környezetében, akkor u-ban f differenciálható.

Bizonyítás. Elegendő az m = 1 esetet vizsgálni. Továbbá a bizonyítás elve nem változik, ha csak az n = 2 esetet vesszük. Legyen x az u mondott környezetéből vett pont, és x=(x1,x2), v=(u1,x2), u=(u1,u2)

f(x)-f(u)=f(x)-f(v)+f(v)-f(u)= \partial_1 f(v)(x_1-u_1)+\varepsilon_v(x_1)|x_1-x_2|+\partial_2 f(u)(x_2-u_2)+\varepsilon_u(x_2)|x_2-u_2|=
=\partial_1 f(v)(x_1-u_1)-\partial_1 f(u)(x_1-u_1)+\partial_1 f(u)(x_1-u_1)+\varepsilon_v(x_1)|x_1-x_2|+\partial_2 f(u)(x_2-u_2)+\varepsilon_u(x_2)|x_2-u_2|=
=\partial_1 f(v)(x_1-u_1)-\partial_1 f(u)(x_1-u_1)+\partial_1 f(u)(x_1-u_1)+\varepsilon_v(x_1)|x_1-x_2|+\partial_2 f(u)(x_2-u_2)+\varepsilon_u(x_2)|x_2-u_2|


Szorzatok differenciálja

Most csak a sokféle szorzat deriváltjának értékét számítjuk ki. Minden esetben igazolható, hogy ha a formulákban szereplő összes derivált létezik, akkor a formula érvényes (sőt, ha a függvények az adott pontban differenciálhatók, akkor a szorzat is differenciálható az adott pontban). Az mátrixelemeket indexesen számítjuk.

Skalárfüggvények szorzata

λ, μ: H \to R, ahol HRn és az uH-ban mindketten differenciálhatók, akkor λμ is és

[\mathrm{d}(\lambda\mu)(u)]_{1j}=\partial_j(\lambda\mu)=\mu\partial_j\lambda+\lambda\partial_j\mu=[\mu(u).\mathrm{grad}\,\lambda(u)+\lambda(u).\mathrm{grad}\,\mu(u)]_{j}

azaz

\mathrm{grad}(\lambda\mu)(u)=\mu(u).\mathrm{grad}\,\lambda(u)+\lambda(u).\mathrm{grad}\,\mu(u)

Skalárfüggvénynel való szorzás

λ: H \to R, f:H \to Rm, ahol HRn és az uH-ban mindketten differenciálhatók, akkor λ.f is és

[\mathrm{d}(\lambda.f)(u)]_{ij}=\partial_j(\lambda.f)=\partial_j\lambda f_i=f_i\partial_j\lambda+\lambda \partial_jf_i

azaz

\mathrm{d}(\lambda.f)(u)=f(u)\scriptstyle{\otimes}\mathrm{grad}\lambda(u)+\lambda(u).\mathrm{d}f(u)\,

ahol \scriptstyle{\otimes} a diadikus szorzat, melynek koordinátamátrixa egy oszlopvektor (balról) és egy sorvektor (jobbról) mátrixszorzatából adódik.

Vekrotfüggvények skaláris szorzata

f,g:H \to Rm, ahol HRn és az uH-ban mindketten differenciálhatók, akkor f\cdotg is és

[\mathrm{d}(f\cdot g)(u)]_{1j}=\partial_j(f\cdot g)=\partial_j f_kg_k=f_k\partial_j g_k+g_k \partial_j f_k

azaz

\mathrm{d}(f\cdot g)(u)=(f(u)\cdot)\circ \mathrm{d}g(u)+(g(u)\cdot)\circ \mathrm{d}f(u)

illetve a Jacobi-mátrixszal:

\mathbf{J}^{f\cdot g}(u)=[f(u)]^\mathrm{T}\cdot \mathbf{J}^g(u) +
[g(u)]^\mathrm{T}\cdot \mathbf{J}^f(u)

ahol [.]T az oszlopvektor transzponáltját, (v\cdot) pedig a v vektorral történő skaláris szorzás operátorát jelöli.


4. gyakorlat 6. gyakorlat
Személyes eszközök