Matematika A2a 2008/5. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2008. március 16., 01:52-kor történt szerkesztése után volt.
Ez az szócikk a Matematika A2a 2008 alszócikke.

Tartalomjegyzék

A differenciálás tulajdonságai

Lineáris és affin függvény deriváltja

Az A : Rn \to Rm lineáris leképezés differenciálható és differenciálja minden pontban saját maga.

Ugyanis, legyen uRn. Ekkor

\lim\limits_{x\to u}\frac{\mathcal{A}(x)-\mathcal{A}(u)-\mathcal{A}(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

c konstans függény esetén az dc(u) \equiv 0 alkalmas differenciálnak, mert

\lim\limits_{x\to u}\frac{c-c-0\cdot(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

így világos, hogy c + A alakú affin függvények is differenciálhatóak, és differenciáljuk minden pontban az az A lineáris leképezés, melynek eltolásából az affin származik. Ezt szintén behelyettesítéssel ellenőrizhetjük.

Tehát minden uRn-re

\mathrm{d}\mathcal{A}(u)=\mathcal{A},\quad\quad\mathrm{d}c(u)\equiv 0,\quad\quad\mathrm{d}(b+\mathcal{A}\circ(id-a))(u)=\mathcal{A}

Példa.

Az A: x \mapsto 2x1 + 3x2 - 4x3 lineáris leképezés differenciálja az u pontban az u-tól független

(\mathrm{d}\mathcal{A}(\mathbf{u}))(x_1,x_2,x_3)=2x_1+3x_2-4x_3\,

és Jacobi-mátrixa a konstans

\mathbf{J}^\mathcal{A}(\mathbf{u})=\begin{bmatrix}2 & 3 & -4\end{bmatrix}

mátrix.

Világos, hogy a

\mathrm{pr}_i:(x_1,x_2,...,x_i,...,x_n)\mapsto x_i

koordináta vagy projekciófüggvény lineáris, differenciálja minden u pontban saját maga és ennek mátrixa:

[\mathrm{grad}\,\mathrm{pr_i}]=\mathbf{J}^{\mathrm{pr}_i}(\mathbf{u})=\begin{bmatrix}0 & 0 & ... & 1 & ...& 0\end{bmatrix}

ahol az 1 az i-edik helyen áll. Másként

\partial_kx_i=\delta_{ki}

ahol

\delta_{ij}=\left\{\begin{matrix}1, \mbox{ ha }i=j\\0, \mbox{ ha }i\ne j \end{matrix}\right.

azaz a Kronecker-féle δ szimbólum.

Függvények lineáris kombinációja

Ha f és g a HRn halmazon értelmezett Rm-be képező, az uH-ban differenciálható függvények, akkor minden λ számra

\lambda.f\, is differenciálható u-ban és \mathrm{d}(\lambda.f)(u)=\lambda.\mathrm{d}f(u)\, és
f+g\, is differenciálható u-ban és \mathrm{d}(f+g)(u)=\mathrm{d}f(u)+\mathrm{d}g(u)\,

Ugyanis, a mondott differenciálokkal és a

\varepsilon_{\lambda.f}=\lambda.\varepsilon_{f}\,
\varepsilon_{f+g}=\varepsilon_{f}+\varepsilon_{g}\,

választással, ezek az u-ban folytonosak lesznek és a lineáris résszekel együtt ezek előállítják a skalárszoros és összegfüggvények megváltozásait.

Függvénykompozíció differenciálja

Tétel. Legyen g: Rn\to Rm, az u-ban differenciálható, f: Rm\to Rk a g(u)-ban differenciálható függvény, u ∈ int Dom(f \circ g). Ekkor az

f\circ g differenciálható u-ban és
 \mathrm{d}(f\circ g)(u)=\mathrm{d}f(g(u))\circ\mathrm{d}g(u)

Bizonyítás. Alkalmas ε, A és η B párral, minden x ∈ Dom(f \circ g)-re:

f(g(x))=f(g(u))+\mathcal{A}(g(x)-g(u))+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+\mathcal{A}(\mathcal{B}(x-u)+\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+\mathcal{A}(\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+(\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||)||x-u||

Innen leolvasható a differenciál és a másodrendben eltűnő mennyiség vektortényezője, az

\varepsilon_{f\circ g}(x)=\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||

melyben az első tag a 0-hoz tart, mivel a lineáris leképezés a 0-ban folytonos, és η a 0-hoz tart az u-ban. A második tag nulla szor korlátos alakú, hiszen a lineáris leképezés Lipschitz-tuladonsága folytán B minden egységvektoron korlátos értéket vesz fel.

Példa.

\Phi(\mathbf{r})=|\mathbf{r}|=\sqrt{\mathbf{r}^2}

Mivel a gyökfüggvény nem differenciálható a 0-ban, ezért a differenciál csak nemnulla r-re számítható ki:

\mathrm{d}\Phi(\mathbf{r}):\mathbf{x}\mapsto \frac{1}{2\sqrt{\mathbf{r}^2}}.2\mathbf{r}\cdot\mathbf{x}=\frac{\mathbf{r}}{|\mathbf{r}|}\cdot\mathbf{x}

illetve a gradiens:

\mathrm{grad}\,|\mathbf{r}|=\frac{\mathbf{r}}{|\mathbf{r}|}

Szemléleti okokból lényeges, hogy itt . a skalárral való szorzás, \cdot a skaláris szorzás.

\Psi(\mathbf{r})=|\mathbf{r}|^{\alpha}
\mathrm{d}\Psi(\mathbf{r}):\mathbf{x}\mapsto \alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}\cdot\mathbf{x}

illetve a gradiens:

\mathrm{grad}\,|\mathbf{r}|^\alpha=\alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}

Szorzatok differenciálja

Most csak a sokféle szorzat deriváltjának értékét számítjuk ki. Minden esetben igazolható, hogy ha a formulákban szereplő összes derivált létezik, akkor a formula érvényes (sőt, ha a függvények az adott pontban differenciálhatók, akkor a szorzat is differenciálható az adott pontban). Az mátrixelemeket indexesen számítjuk.

Skalárok szorzata

λ, μ: H \to R, ahol HRn és az uH-ban mindketten differenciálhatók, akkor λμ is és

[\mathrm{d}(\lambda\mu)(u)]_{1j}=\partial_j(\lambda\mu)=\mu\partial_j\lambda+\lambda\partial_j\mu=[\mu(u).\mathrm{grad}\,\lambda(u)+\lambda(u).\mathrm{grad}\,\mu(u)]_{1j}

Skalárral való szorzás

4. gyakorlat 6. gyakorlat
Személyes eszközök