Matematika A2a 2008/5. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2009. március 14., 10:01-kor történt szerkesztése után volt.

Tartalomjegyzék

Parciális deriváltak

Pontbeli deriváltak

Definíció. Legyen f: Rn \supset\!\to R, u ∈ int Dom(f). Azt mondjuk, hogy f parciálisan differenciálható az u pontban a xi változó szerint, ha az

f(u_1,...,.,...,u_n): x_i\mapsto f(u_1,...x_i,...,u_n)\,

egyváltozós valós függvény differenciálható az ui pontban. Ekkor a fenti függvény ui-beli deriváltját

\partial_if(u),\quad f'_{x_i}(u),\quad f_{x_i}(u),\quad\left.\frac{\partial f}{\partial x_i}\right|_{x=u}

jelöli.

Példa:

\frac{\partial x^2\cdot\sin(y)}{\partial x}=2x\cdot \sin(y)
\frac{\partial x^2\cdot\sin(y)}{\partial y}=x^2\cdot \cos(y)
\frac{\partial x^2\cdot\sin(y)}{\partial z}=0
\frac{\partial \sin(\mathrm{sh}(x)y^2)}{\partial x}=\cos(\mathrm{sh}(x)y^2)\cdot \mathrm{ch}(x)y^2

Feladat. Parciálisan deriválható-e az

f(x,y)=\sqrt{x^2+y^2}

a (0,0)-ban?

Feladat. Parciálisan deriválható-e az

f(x,y)=\left\{\begin{matrix}
0,& \mbox{ ha }(x,y)=(0,0)\\
(x^2+y)\sin\frac{1}{|x|+|y|},& \mbox{ ha }(x,y)\ne(0,0)
\end{matrix}\right.

a (0,0)-ban?

Szélsőérték szükséges feltétele

Egyelőre állapodjunk meg abban, hogy gradiensnek nevezzük a következő többváltozós vektorértékű függvényt: ha f: Rn \supset\!\to R parciálisan differenciálható, akkor

\mathrm{grad}\,f(x)=(\partial_1f(x),...,\partial_nf(x))

mely lényegében az f elsőrendű parciális deriváltjaiból képezett vektor.

Később a gradienst egy kissé másképp fogjuk értelmezni és amit most definiáltunk, az a gradiens sztenderd bázisbeli mátrixa lesz (adott pontra vonatkozóan).


Tétel - Fermat-tétel - Legyen f: Rn \supset\!\to R, u ∈ int Dom(f), f parciálisan differenciálható u-ban.

Ha u-ban f-nek (lokális) szélsőértéke van, akkor
\mathrm{grad}\,f(u)=0_{\mathbf{R}^n}\,

U.is: minden i-re az i-edik parciális függvénynek szélsőértéke van ui-ben, így az egyváltozós Fermat-tétel miatt ezeknek a deriváltja ui-ben 0, így a gradiens értéke 0.

Példa

f(x,y)=x^2y^2\,

Ennek gradiense:

\mathrm{grad}\,f(x,y)=(2xy^2,2yx^2)

Az

\left.
\begin{matrix} 
\mathrm{I.} & 2xy^2 & = & 0\\
\mathrm{II.} & 2yx^2 & = & 0\\
\end{matrix}
\right\}

egyenletrendszer megoldásai: x = 0, y tetszőleges ill. y = 0 és x tetszőleges. A szélsőértékek helyei csak ezek közül kerülhetnek ki és ezek valóban szélsőértékek is, mert ezeken a függvény 0-t vesz fel, ami a lehetséges legkisebb értéke.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot 5*x*x*y*y

Magasabbrendű parciális deriváltak

Ha f parciálisan deriválható, akkor ∂1f és ∂2f szintén kétváltozós függvények (a pontonként a deriváltak, mint függvényértékek értelmezésével) és érdeklődhetünk ezek parciális differenciálhatóságuk iránt. Például:

f(x,y)=x^2y^4+x^5-y^3\,
\partial_xf(x,y)=xy^4+5x^4
\partial_yf(x,y)=x^24y^3-3y^2
\partial_x(\partial_xf)(x,y)=y^4+20x^3
\partial_y(\partial_yf)(x,y)=12x^2y^2-6y^2
\partial_y(\partial_xf)(x,y)=x4y^3
\partial_x(\partial_yf)(x,y)=4xy^3

És valóban:

Tétel. (Young-tétel) Ha a másodrendű parciláis deriváltak léteznek az u egy környezetében és folytonosak az u pontban, akkor az u-beli vegyes másodrendű parciláis deriváltak egyenlőek:

\partial_x(\partial_y f)(u)=\partial_y(\partial_x f)(u)

Azaz az alábbi, úgy nevezett Hesse-mátrix szimmetrikus:

H^f(u)=\begin{bmatrix}
\cfrac{\partial^2 f(u)}{\partial x^2} & \cfrac{\partial^2 f(u)}{\partial y\partial x}\\\\
\cfrac{\partial^2 f(u)}{\partial x\partial y} & \cfrac{\partial^2 f(u)}{\partial y^2}
\end{bmatrix}

Feladat. Az a kitétel, hogy az u-ban a másodrenrű parciláis deriváltak folytonosak, nem hagyható el, ugyanis. Legyen

f(x,y)=\left\{\begin{matrix}
0,& \mbox{ ha }(x,y)=(0,0)\\
\frac{xy(x^2-y^2)}{x^2+y^2},& \mbox{ ha }(x,y)\ne(0,0)
\end{matrix}\right.

Ekkor a 0-ban nem egyenlő a két vegyes parciális derivált.

Tekintsük a parciláis deriváltakat:

\partial_x(\partial_yf)(0,0)=\lim\limits_{x\to 0}\frac{(\partial_yf)(x,0)-(\partial_yf)(0,0)}{x}
\partial_y(\partial_xf)(0,0)=\lim\limits_{y\to 0}\frac{(\partial_xf)(0,y)-(\partial_xf)(0,0)}{y}

Ehhez tehát elegendő kiszámítani a következő föggvényeket: y \mapsto (∂xf)(0,y), x \mapsto (∂yf)(x,0). Ehhez a parciális deriváltak:

\partial_xf(0,y)=\lim\limits_{t\to 0}\frac{f(t,y)-f(0,0)}{t}=\left\{\begin{matrix}
0,& \mbox{ ha }y=0\\
-y,& \mbox{ ha }y\ne 0
\end{matrix}\right.
\partial_yf(x,0)=\lim\limits_{t\to 0}\frac{f(x,t)-f(0,0)}{t}=\left\{\begin{matrix}
0,& \mbox{ ha }x=0\\
x,& \mbox{ ha }x\ne 0
\end{matrix}\right.

Többváltozós függvény szélsőértéke

Másodikderivált próba

Kétszer differenciálható függvényre vonatkozóan megfogalmazhatjuk a lokális maximum és minimum létezésének elégséges feltételét. Csak a kétváltozós függvényekkel foglalkozunk. Tegyük fel, hogy grad f(u) = 0 és Hf(u) az f Hesse-mátrixa

  1. ha det Hf(u) > 0 és ∂11f(u) < 0, akkor f-nek u-ban maximuma van
  2. ha det Hf(u) > 0 és ∂11f(u) > 0, akkor f-nek u-ban minimuma van
  3. ha det Hf(u) < 0, akkor f-nek biztosan nincs szélsőértéke, ún. nyeregpontja van
  4. ha det Hf(u) = 0, akkor a próba nem járt sikerrel, azaz további vizsgálatokat igényel annak eldöntése, hogy u szélsőérték hely-e.

Megjegyzések. Mivel kétváltozós esetben

\mathrm{det}\,\mathrm{H}^f(u)=\partial_{11}f(u)\cdot \partial_{22}f(u)-(\partial_{12}f(u))^2

ezért olyan eset nem létezik, hogy det Hf(u) > 0 és ∂11f(u) = 0.

Világos, hogy a másodikderivált tipikusan azoknál a függvényeknél jár sikerrel, melyeket egy másodfokú függvény közelít a legjobban (aszimptotikusan másodfokúak). Ha a függvény ennél magasabb fokú, akkor a második deriváltak eltűnnek és a Hesse-mártix elfajul (vagy legalább is tipikusan elfajul).

Ha tehát

\mathrm{H}^{f}(u)=\begin{pmatrix}
 A & B \\
 B & C
\end{pmatrix}, akkor \mathrm{det\,H}^{f}(u)=AC - B^2 ,

és így a tipikus példák a következők.

Példák

1. Ha B kicsi, azaz az AC-hez képest kis abszolútrétékű szám, akkor a szélsőérték irányába mozdul el a feladat.

f(x,y)=x^2+xy+y^2\,

Ekkor grad f = ( 2x + y , 2y + x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 1 \\
 1 & 2
\end{pmatrix}

azaz 4 - 1 = 3 > 0 és 2 > 0 miatt minimum.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x+x*y+y*y

2. Ha |B| nagy (azaz AC-hez képest nagy), akkor a bizonyosan nemszélsőérték irányába.

f(x,y)=x^2-3xy+y^2\,

Ekkor grad f = ( 2x + -3y , 2y + -3x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & -3 \\
 -3 & 2
\end{pmatrix}

azaz 4 - 9 = -5 < 0 miatt nincs szélsőérték: nyeregpont.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x -3*x*y+y*y

3. Negatív A és C-re és kis B-re:

f(x,y)=-x^2+xy-y^2\,

Ekkor grad f = ( -2x + 3y , -2y + 3x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 -2 & 1 \\
 1 & -2
\end{pmatrix}

azaz 4 - 1 = 3 > 0 és -2 < 0 miatt maximum.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot -x*x +x*y-y*y

4. Ha A és C előjele ellenkező, akkor rögtön következik, hogy nincs sz.é.

f(x,y)=x^2+xy-y^2\,

Ekkor grad f = ( 2x + y , -2y + x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 1 \\
 1 & -2
\end{pmatrix}

azaz -4 - 1 = -5 < 0 azaz nyeregpont.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x +x*y-y*y

5. Atipikus eset, ha AC = B2. Ekkor nem jár sikerrel a próba:

f(x,y)=x^2+2xy+y^2\,

Ekkor grad f = ( 2x + 2y , 2y + 2x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 2 \\
 2 & 2
\end{pmatrix}

azaz 4 - 4 = 0, azaz határozatlan eset. De tudjuk, hogy

f(x,y)=(x+y)^2\,

ami pontosan akkor minimális, ha x = -y, azaz ezeken a helyeken van szélsőérték.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot (x+y)*(x+y)


4. gyakorlat 6. gyakorlat
Személyes eszközök