Matematika A2a 2008/5. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2013. október 7., 20:50-kor történt szerkesztése után volt.

Tartalomjegyzék

Folytonosság és totális differenciálhatóság

Tekintsük az

g(x,y)=\left\{\begin{matrix}\begin{pmatrix}\frac{xy}{x^2+y^2}\\ x+y\end{pmatrix}& \mbox{, ha }&(x,y)\ne (0,0)\\
\begin{pmatrix}0\\ 0\end{pmatrix}&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.

Ekkor

J^g(0,0)=\begin{pmatrix}0 & 0\\
1 & 1\end{pmatrix}

Viszont g nem totálisan diffható, mert a (t,t) mentén a (0,0)-ba tartva:

\lim\limits_{t\to 0}\frac{g(t,t)-g(0,0)-J^g(0,0)\cdot(t,t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}\frac{(\frac{1}{2},2t)-(0,t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}\frac{(\frac{1}{2},t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}(\frac{1}{\sqrt{2}2|t|},\frac{t}{\sqrt{2}|t|})

ami nem létezik.

Megjegyzés. Itt persze g nem folytonos, és itt is igaz az, hogy ha totálisan differenciálható egy függvény, akkor folytonos is:

Tétel. Ha f differenciálható u-ban, akkor ott folytonos is, ugyanis minden x-re:

f(x)=f(u)+(\mathrm{d}f(u))(x-u)+\varepsilon(x)||x-u||

amely tagjai mind folytonosak u-ban.

Iránymenti deriválhatóság és differenciálhatóság

Példa.

f(x,y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^2+y^2}}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.

Ekkor

\mathrm{J}^f(0,0)=[0, 0]\,

Ha tehát differenciálható, akkor az iránymenti deriváltak (Gateau-deriváltak) is léteznek (e egységvektor):

\partial_ef(u)=\lim\limits_{t\to 0}\frac{f(u+te)-f(u)}{t}=\mathrm{J}^f(0,0)\cdot e=e\cdot\mathrm{grad}\,f(u)

Ám, polárkoordinátákra áttérve:

f(x(r,\varphi),y(r,\varphi))=\frac{r^2\cos\varphi\sin\varphi}{r}=r\cos\varphi\sin\varphi=r\cdot \frac{1}{2}\sin 2\varphi

φ = π/4-et és π + π/4-et véve a vetületfüggvény a

t\mapsto\frac{1}{2}|t|,

ami nem differenciálható a 0-ban.

Megjegyzés. Persze abból, hogy az összes iránymenti derivált létezik, abból nem következik, hogy a függvény totálisan deriválható:

Egyváltozós illetve valós értékű függvény deriváltja

Ha f:Rn \supset\!\to R, akkor a definíciót még így is ki szokás mondani:

f diffható r0-ban, ha létezik m vektor, hogy

\lim\limits_{r\to r_0}\frac{f(r)-f(r_0)-m\cdot(r-r_0)}{|r-r_0|}=0

Ekkor az m a gradiensvektor, melynek sztenderd bázisbeli koordinátamátrixa a Jacobi mátrix:

\mathrm{grad}\,f(r_0)=[\partial_1f(r_0),...,\partial_nf(r_0)]

Ha f:R \supset\!\to Rn, akkor a definíciót még így is ki szokás mondani:

\exists\,f'(t_0)=\lim\limits_{t\to t_0}\frac{f(t)-f(t_0)}{t-t_0}\,

és ekkor f'(t0) a t0-beli deriváltvektor (ha t az idő és r=f(t) a hely, akkor ez a sebeségvektor).

Ha f:Rn \supset\!\to Rn, akkor a differenciált deriválttenzornak is nevezik.


Példa.

Mi az

f(r)=r^2\,,

skalárfüggvény gradiense?

Válasszuk le a lineáris részét!

r^2-r_0^2=(r-r_0)(r+r_0)=(r-r_0)(2r_0+r-r_0)=2r_0\cdot(r-r_0)+(r-r_0)^2\,

Itt az első tag a lineáris, a második a magasabbfokú. Tehát:

\mathrm{grad}\,r^2=2r\,

Lineáris és affin függvény deriváltja

Tétel. Az A : Rn \to Rm lineáris leképezés differenciálható és differenciálja minden pontban saját maga:

\mathrm{d}\mathcal{A}(u)=\mathcal{A}\,

Ugyanis, legyen uRn. Ekkor

\lim\limits_{x\to u}\frac{\mathcal{A}(x)-\mathcal{A}(u)-\mathcal{A}(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

Tétel. Az azonosan c konstans függény esetén az dc(u) \equiv 0 alkalmas differenciálnak, mert

\lim\limits_{x\to u}\frac{c-c-0\cdot(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0


Tétel. Ha f és g a HRn halmazon értelmezett Rm-be képező, az uH-ban differenciálható függvények, akkor minden λ számra

\lambda.f\, is differenciálható u-ban és \mathrm{d}(\lambda.f)(u)=\lambda.\mathrm{d}f(u)\, és
f+g\, is differenciálható u-ban és \mathrm{d}(f+g)(u)=\mathrm{d}f(u)+\mathrm{d}g(u)\,

Ugyanis, a mondott differenciálokkal és a

\varepsilon_{\lambda.f}=\lambda.\varepsilon_{f}\,
\varepsilon_{f+g}=\varepsilon_{f}+\varepsilon_{g}\,

választással, ezek az u-ban folytonosak lesznek és a lineáris résszekel együtt ezek előállítják a skalárszoros és összegfüggvények megváltozásait.

Következmény. Tehát minden uRn-re az affin c+A diffható és

\mathrm{d}(c+\mathcal{A})(u)=\mathcal{A}

Példa

Az A: x \mapsto 2x1 + 3x2 - 4x3 lineáris leképezés differenciálja az u pontban az u-tól független

(\mathrm{d}\mathcal{A}(\mathbf{u}))(x_1,x_2,x_3)=2x_1+3x_2-4x_3\,

és Jacobi-mátrixa a konstans

\mathbf{J}^\mathcal{A}(\mathbf{u})=\begin{bmatrix}2 & 3 & -4\end{bmatrix}

mátrix.

Világos, hogy a

\mathrm{pr}_i:(x_1,x_2,...,x_i,...,x_n)\mapsto x_i

koordináta vagy projekciófüggvény lineáris, differenciálja minden u pontban saját maga és ennek mátrixa:

[\mathrm{grad}\,\mathrm{pr_i}]=\mathbf{J}^{\mathrm{pr}_i}(\mathbf{u})=\begin{bmatrix}0 & 0 & ... & 1 & ...& 0\end{bmatrix}

ahol az 1 az i-edik helyen áll. Másként

\partial_kx_i=\delta_{ki}

ahol

\delta_{ij}=\left\{\begin{matrix}1, \mbox{ ha }i=j\\0, \mbox{ ha }i\ne j \end{matrix}\right.

azaz a Kronecker-féle δ szimbólum.


Szélsőérték szükséges feltétele

Egyelőre állapodjunk meg abban, hogy gradiensnek nevezzük a következő többváltozós vektorértékű függvényt: ha f: Rn \supset\!\to R parciálisan differenciálható, akkor

\mathrm{grad}\,f(x)=(\partial_1f(x),...,\partial_nf(x))

mely lényegében az f elsőrendű parciális deriváltjaiból képezett vektor.

Később a gradienst egy kissé másképp fogjuk értelmezni és amit most definiáltunk, az a gradiens sztenderd bázisbeli mátrixa lesz (adott pontra vonatkozóan).


Tétel - Fermat-tétel - Legyen f: Rn \supset\!\to R, u ∈ int Dom(f), f parciálisan differenciálható u-ban.

Ha u-ban f-nek (lokális) szélsőértéke van, akkor
\mathrm{grad}\,f(u)=0_{\mathbf{R}^n}\,

U.is: minden i-re az i-edik parciális függvénynek szélsőértéke van ui-ben, így az egyváltozós Fermat-tétel miatt ezeknek a deriváltja ui-ben 0, így a gradiens értéke 0.

Példa

f(x,y)=x^2y^2\,

Ennek gradiense:

\mathrm{grad}\,f(x,y)=(2xy^2,2yx^2)

Az

\left.
\begin{matrix} 
\mathrm{I.} & 2xy^2 & = & 0\\
\mathrm{II.} & 2yx^2 & = & 0\\
\end{matrix}
\right\}

egyenletrendszer megoldásai: x = 0, y tetszőleges ill. y = 0 és x tetszőleges. A szélsőértékek helyei csak ezek közül kerülhetnek ki és ezek valóban szélsőértékek is, mert ezeken a függvény 0-t vesz fel, ami a lehetséges legkisebb értéke.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot 5*x*x*y*y

Magasabbrendű parciális deriváltak

Ha f parciálisan deriválható, akkor ∂1f és ∂2f szintén kétváltozós függvények (a pontonként a deriváltak, mint függvényértékek értelmezésével) és érdeklődhetünk ezek parciális differenciálhatóságuk iránt. Például:

f(x,y)=x^2y^4+x^5-y^3\,
\partial_xf(x,y)=xy^4+5x^4
\partial_yf(x,y)=x^24y^3-3y^2
\partial_x(\partial_xf)(x,y)=y^4+20x^3
\partial_y(\partial_yf)(x,y)=12x^2y^2-6y^2
\partial_y(\partial_xf)(x,y)=x4y^3
\partial_x(\partial_yf)(x,y)=4xy^3

És valóban:

Tétel. (Young-tétel) Ha a másodrendű parciláis deriváltak léteznek az u egy környezetében és folytonosak az u pontban, akkor az u-beli vegyes másodrendű parciláis deriváltak egyenlőek:

\partial_x(\partial_y f)(u)=\partial_y(\partial_x f)(u)

Azaz az alábbi, úgy nevezett Hesse-mátrix szimmetrikus:

H^f(u)=\begin{bmatrix}
\cfrac{\partial^2 f(u)}{\partial x^2} & \cfrac{\partial^2 f(u)}{\partial y\partial x}\\\\
\cfrac{\partial^2 f(u)}{\partial x\partial y} & \cfrac{\partial^2 f(u)}{\partial y^2}
\end{bmatrix}

Feladat. Az a kitétel, hogy az u-ban a másodrenrű parciláis deriváltak folytonosak, nem hagyható el, ugyanis. Legyen

f(x,y)=\left\{\begin{matrix}
0,& \mbox{ ha }(x,y)=(0,0)\\
\frac{xy(x^2-y^2)}{x^2+y^2},& \mbox{ ha }(x,y)\ne(0,0)
\end{matrix}\right.

Ekkor a 0-ban nem egyenlő a két vegyes parciális derivált.

Tekintsük a parciális deriváltakat:

\partial_x(\partial_yf)(0,0)=\lim\limits_{x\to 0}\frac{(\partial_yf)(x,0)-(\partial_yf)(0,0)}{x}
\partial_y(\partial_xf)(0,0)=\lim\limits_{y\to 0}\frac{(\partial_xf)(0,y)-(\partial_xf)(0,0)}{y}
\partial_x(\partial_xf)(0,0)=\lim\limits_{x\to 0}\frac{(\partial_xf)(x,0)-(\partial_xf)(0,0)}{x}
\partial_y(\partial_yf)(0,0)=\lim\limits_{y\to 0}\frac{(\partial_yf)(0,y)-(\partial_yf)(0,0)}{y}

Ehhez tehát elegendő kiszámítani a következő föggvényeket: y \mapsto (∂xf)(0,y), x \mapsto (∂yf)(x,0). Ehhez a parciális deriváltak:

\partial_xf(0,y)=\lim\limits_{t\to 0}\frac{f(t,y)-f(0,0)}{t}=\left\{\begin{matrix}
0,& \mbox{ ha }y=0\\
-y,& \mbox{ ha }y\ne 0
\end{matrix}\right.
\partial_yf(x,0)=\lim\limits_{t\to 0}\frac{f(x,t)-f(0,0)}{t}=\left\{\begin{matrix}
0,& \mbox{ ha }x=0\\
x,& \mbox{ ha }x\ne 0
\end{matrix}\right.
\partial_yf(0,y)=\lim\limits_{t\to 0}\frac{f(0,y+t)-f(0,0)}{t}=0
\partial_xf(x,0)=\lim\limits_{t\to 0}\frac{f(x+t,0)-f(0,0)}{t}=0

Megjegyezzük, hogy a g=(∂xf,∂yf) függvény (0,0)-beli parciális deriváltjai nem lehetnek folytonosak, mert ott a függvény nem totálisan diffható. Ugyanis a g Jacobi-mátrixa:

J^g(0,0)=H^f(0,0)=\begin{bmatrix}
0 & -1\\
1 & 0
\end{bmatrix}

ami a 90˚-os forgatás. Ekkor a g-t a (t,0) vektorral közelítve a 0-ba:

\lim\limits_{t\to 0}\frac{g(t,0)-g(0,0)-J^g(0,0)\cdot (t,0)}{|t|}=\lim\limits_{t\to 0}\frac{(0,-t)}{|t|}\ne (0,0)\,

márpedig ha g minden parciális deriváltja folytonos lenne a (0,0)-ban, akkor g totálisan is deriválható lenne.

Többváltozós függvény szélsőértéke

Másodikderivált próba

Kétszer differenciálható függvényre vonatkozóan megfogalmazhatjuk a lokális maximum és minimum létezésének elégséges feltételét. Csak a kétváltozós függvényekkel foglalkozunk. Tegyük fel, hogy grad f(u) = 0 és Hf(u) az f Hesse-mátrixa

  1. ha det Hf(u) > 0 és ∂11f(u) < 0, akkor f-nek u-ban maximuma van
  2. ha det Hf(u) > 0 és ∂11f(u) > 0, akkor f-nek u-ban minimuma van
  3. ha det Hf(u) < 0, akkor f-nek biztosan nincs szélsőértéke, ún. nyeregpontja van
  4. ha det Hf(u) = 0, akkor a próba nem járt sikerrel, azaz további vizsgálatokat igényel annak eldöntése, hogy u szélsőérték hely-e.

Megjegyzések. Mivel kétváltozós esetben

\mathrm{det}\,\mathrm{H}^f(u)=\partial_{11}f(u)\cdot \partial_{22}f(u)-(\partial_{12}f(u))^2

ezért olyan eset nem létezik, hogy det Hf(u) > 0 és ∂11f(u) = 0.

Világos, hogy a másodikderivált tipikusan azoknál a függvényeknél jár sikerrel, melyeket egy másodfokú függvény közelít a legjobban (aszimptotikusan másodfokúak). Ha a függvény ennél magasabb fokú, akkor a második deriváltak eltűnnek és a Hesse-mártix elfajul (vagy legalább is tipikusan elfajul).

Ha tehát

\mathrm{H}^{f}(u)=\begin{pmatrix}
 A & B \\
 B & C
\end{pmatrix}, akkor \mathrm{det\,H}^{f}(u)=AC - B^2 ,

és így a tipikus példák a következők.

Példák

1. Ha B kicsi, azaz az AC-hez képest kis abszolútrétékű szám, akkor a szélsőérték irányába mozdul el a feladat.

f(x,y)=x^2+xy+y^2\,

Ekkor grad f = ( 2x + y , 2y + x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 1 \\
 1 & 2
\end{pmatrix}

azaz 4 - 1 = 3 > 0 és 2 > 0 miatt minimum.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x+x*y+y*y

2. Ha |B| nagy (azaz AC-hez képest nagy), akkor a bizonyosan nemszélsőérték irányába.

f(x,y)=x^2-3xy+y^2\,

Ekkor grad f = ( 2x + -3y , 2y + -3x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & -3 \\
 -3 & 2
\end{pmatrix}

azaz 4 - 9 = -5 < 0 miatt nincs szélsőérték: nyeregpont.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x -3*x*y+y*y

3. Negatív A és C-re és kis B-re:

f(x,y)=-x^2+xy-y^2\,

Ekkor grad f = ( -2x + 3y , -2y + 3x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 -2 & 1 \\
 1 & -2
\end{pmatrix}

azaz 4 - 1 = 3 > 0 és -2 < 0 miatt maximum.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot -x*x +x*y-y*y

4. Ha A és C előjele ellenkező, akkor rögtön következik, hogy nincs sz.é.

f(x,y)=x^2+xy-y^2\,

Ekkor grad f = ( 2x + y , -2y + x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 1 \\
 1 & -2
\end{pmatrix}

azaz -4 - 1 = -5 < 0 azaz nyeregpont.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x +x*y-y*y

5. Atipikus eset, ha AC = B2. Ekkor nem jár sikerrel a próba:

f(x,y)=x^2+2xy+y^2\,

Ekkor grad f = ( 2x + 2y , 2y + 2x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 2 \\
 2 & 2
\end{pmatrix}

azaz 4 - 4 = 0, azaz határozatlan eset. De tudjuk, hogy

f(x,y)=(x+y)^2\,

ami pontosan akkor minimális, ha x = -y, azaz ezeken a helyeken van szélsőérték.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot (x+y)*(x+y)


4. gyakorlat 6. gyakorlat
Személyes eszközök