Matematika A2a 2008/6. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2009. március 26., 11:15-kor történt szerkesztése után volt.
Ez az szócikk a Matematika A2a 2008 alszócikke.


Tartalomjegyzék

Differenciálhatóság

A többváltozós differenciálhatóságot az egyváltozós alábbi átfogalmazásából általánosítjuk:

\lim\limits_{x\to u}\frac{f(x)-f(u)-m(x-u)}{|x-u|}=0
\lim\limits_{x\to u+}\frac{f(x)-f(u)-m(x-u)}{x-u}=0\quad\wedge\quad\lim\limits_{x\to u-}\frac{f(x)-f(u)-m(x-u)}{-(x-u)}=0
\lim\limits_{x\to u+}\left(\frac{f(x)-f(u)}{x-u}-m\right)=0,\quad\wedge\quad\lim\limits_{x\to u-}-\left(\frac{f(x)-f(u)}{x-u}-m\right)=0
\lim\limits_{x\to u+}\frac{f(x)-f(u)}{x-u}=m,\quad\wedge\quad\lim\limits_{x\to u-}-\frac{f(x)-f(u)}{x-u}=-m
\lim\limits_{x\to u}\frac{f(x)-f(u)}{x-u}=m


Definíció. Legyen f: Rn \supset\!\longrightarrow Rm és u ∈ int Dom(f). Azt mondjuk, hogy f differenciálható az u pontban, ha létezik olyan A: Rn \to Rm lineáris leképezés, hogy

\lim\limits_{x\to u}\frac{f(x)-f(u)-\mathcal{A}(x-u)}{||x-u||_{\mathbf{R}^n}}=0_{\mathbf{R}^m}

Ekkor A egyértelmű és az f leképezés u-bent beli differenciáljának vagy n×n-es esetben deriválttenzorának nevezzük és df(u)-val vagy Df(u)-val jelöljük. Ezt a fogalmat néha teljes differenciálnak, totális differenciálnak vagy Fréchet-deriváltnak is mondjuk.

Megjegyzés. A fenti határérték 0 volta egyenértékű a következő kijelentéssel. Létezik A: Rn \to Rm lineáris leképezés és ε: Dom(f) \to Rm függvény, melyre:

ε folytonos u-ban és ε(u)=0, továbbá

minden x ∈ Dom(f)-re:

f(x)=f(u)+\mathcal{A}(x-u)+\varepsilon(x)||x-u||

Megjegyzés. Azt, hogy A egyértelmű, a következőkkel bizonyíthatjuk. Legyen A és B is a mondott tulajdonságú, azaz létezzenek ε és η az u-ban eltűnő és ott folytonos Dom(f)-en értelmezett függvények, melyekre teljesül, hogy minden x ∈ Dom(f)-re

f(x)=f(u)+\mathcal{A}(x-u)+\varepsilon(x)||x-u||
f(x)=f(u)+\mathcal{B}(x-u)+\eta(x)||x-u||

ezeket kivonva egymásból és használva minden x-re:

(\mathcal{A}-\mathcal{B})(x-u)+(\varepsilon(x)-\eta(x))||x-u||=0

így minden x = u + ty értékre is az azonosan nullát kapjuk, ha t pozitív szám, y pedig rögzített nemnulla vektor, azaz minden t-re

(\mathcal{A}-\mathcal{B})ty+(\varepsilon(u+ty)-\eta(u+ty))||ty||=0

az azonosan 0 függény határértéke t\to 0 esetén szintén nulla:

 0=\lim\limits_{t\to 0}\frac{(\mathcal{A}-\mathcal{B})(ty)+(\varepsilon(u+ty)-\eta(u+ty))||ty||}{t}=(\mathcal{A}-\mathcal{B})y

hiszen t-t kiemelhetünk és egyszerűsíthetünk és t\to 0 esetén ε és η nullává válik. Ez viszont pont azt jelenti, hogy a két lineéris operátor azonosan egyenlő.

Jacobi-mátrix

A df(u) lineáris leképezés (e1,e2,...,en) szetenderd bázisbeli mátrixa legyen: [df(u)] = A. Vizsgáljuk mibe viszi a bázisokat df(u) leképezés!

Írjuk fel a definíciót, de az e1 egységvektor mentén tartsunk u-hoz: x = u + te1. Ekkor

x-u=te_1\,

ami azért hasznos, mert a

\mathcal{A}(x-u)=\mathcal{A}(te_1)\,

alakból kiemelhetó t:

0=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)-\mathcal{A}(te_1)}{t}=
=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)-t.\mathcal{A}(e_1)}{t}=
=-\mathcal{A}(e_1)+\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)}{t}

azaz

\mathcal{A}(e_1)=\lim\limits_{t\to 0}\frac{f(u+te_1)-f(u)}{t}=\partial_1 f(u)

vagyis f koordinátafüggvényeinek az első változó szerinti parciális deriváltja az u pontban. A többi oszlopvektor ugyanígy:

[\mathrm{d}f(u)]=\mathbf{J}^f(u)=\begin{bmatrix}
\partial_1 f_1(u) & \partial_2 f_1(u) & \dots & \partial_n f_1(u)\\
\partial_1 f_2(u) & \partial_2 f_2(u) & \dots & \partial_n f_2(u)\\
\vdots            &     \vdots        &   \ddots    & \vdots \\
\partial_1 f_m(u) & \partial_2 f_m(u) & \dots & \partial_n f_m(u)\\
\end{bmatrix}

amelyet Jacobi-mátrixnak nevezünk.

Következmény. Tehát. ha f totálisan differenciálható, akkor parciálisan is differenciálható és a differenciál sztenderd bázisbeli mátrixa a Jacobi-mátrix.

Azaz:

teljes differenciálhatóság \Longrightarrow parciális differenciálhatóság

de ez fordítva már nem igaz:

parciális differenciálhatóság \not\Rightarrow teljes differenciálhatóság

Erre vonatkozik a két alábbi példa.

Folytonosság és totális differenciálhatóság

Tekintsük az

g(x,y)=\left\{\begin{matrix}\begin{pmatrix}\frac{xy}{x^2+y^2}\\ x+y\end{pmatrix}& \mbox{, ha }&(x,y)\ne (0,0)\\
\begin{pmatrix}0\\ 0\end{pmatrix}&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.

Ekkor

J^g(0,0)=\begin{pmatrix}0 & 0\\
1 & 1\end{pmatrix}

Viszont g nem totálisan diffható, mert a (t,t) mentén a (0,0)-ba tartva:

\lim\limits_{t\to 0}\frac{g(t,t)-g(0,0)-J^g(0,0)\cdot(t,t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}\frac{(\frac{1}{2},2t)-(0,t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}\frac{(\frac{1}{2},t)}{\sqrt{2}|t|}=\lim\limits_{t\to 0}(\frac{1}{\sqrt{2}2|t|},\frac{t}{\sqrt{2}|t|})

ami nem létezik.

Megjegyzés. Itt persze g nem folytonos, és itt is igaz az, hogy ha totálisan differenciálható egy függvény, akkor folytonos is:

Tétel. Ha f differenciálható u-ban, akkor ott folytonos is, ugyanis minden x-re:

f(x)=f(u)+(\mathrm{d}f(u))(x-u)+\varepsilon(x)||x-u||

amely tagjai mind folytonosak u-ban.

Iránymenti deriválhatóság és differenciálhatóság

Példa.

f(x,y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^2+y^2}}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.

Ekkor

\mathrm{J}^f(0,0)=[0, 0]\,

Ha tehát differenciálható, akkor az iránymenti deriváltak (Gateau-deriváltak) is léteznek (e egységvektor):

\partial_ef(u)=\lim\limits_{t\to 0}\frac{f(u+te)-f(u)}{t}=\mathrm{J}^f(0,0)\cdot e=\mathrm{grad}\,f(u)

Ám, polárkoordinátákra áttérve:

f(x(r,\varphi),y(r,\varphi))=\frac{r^2\cos\varphi\sin\varphi}{r}=r\cos\varphi\sin\varphi=r\cdot \frac{1}{2}\sin 2\varphi

φ = π/4-et és π + π/4-et véve a vetületfüggvény a

t\mapsto\frac{1}{2}|t|,

ami nem differenciálható a 0-ban.


Lineáris és affin függvény deriváltja

Tétel. Az A : Rn \to Rm lineáris leképezés differenciálható és differenciálja minden pontban saját maga:

\mathrm{d}\mathcal{A}(u)=\mathcal{A}\,

Ugyanis, legyen uRn. Ekkor

\lim\limits_{x\to u}\frac{\mathcal{A}(x)-\mathcal{A}(u)-\mathcal{A}(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

Tétel. Az azonosan c konstans függény esetén az dc(u) \equiv 0 alkalmas differenciálnak, mert

\lim\limits_{x\to u}\frac{c-c-0\cdot(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0


Tétel. Ha f és g a HRn halmazon értelmezett Rm-be képező, az uH-ban differenciálható függvények, akkor minden λ számra

\lambda.f\, is differenciálható u-ban és \mathrm{d}(\lambda.f)(u)=\lambda.\mathrm{d}f(u)\, és
f+g\, is differenciálható u-ban és \mathrm{d}(f+g)(u)=\mathrm{d}f(u)+\mathrm{d}g(u)\,

Ugyanis, a mondott differenciálokkal és a

\varepsilon_{\lambda.f}=\lambda.\varepsilon_{f}\,
\varepsilon_{f+g}=\varepsilon_{f}+\varepsilon_{g}\,

választással, ezek az u-ban folytonosak lesznek és a lineáris résszekel együtt ezek előállítják a skalárszoros és összegfüggvények megváltozásait.


Következmény. Tehát minden uRn-re

\mathrm{d}\mathcal{A}(u)=\mathcal{A},\quad\quad\mathrm{d}c(u)\equiv 0,\quad\quad\mathrm{d}(b+\mathcal{A}\circ(\mathrm{id}-a))(u)=\mathcal{A}

Példa

Az A: x \mapsto 2x1 + 3x2 - 4x3 lineáris leképezés differenciálja az u pontban az u-tól független

(\mathrm{d}\mathcal{A}(\mathbf{u}))(x_1,x_2,x_3)=2x_1+3x_2-4x_3\,

és Jacobi-mátrixa a konstans

\mathbf{J}^\mathcal{A}(\mathbf{u})=\begin{bmatrix}2 & 3 & -4\end{bmatrix}

mátrix.

Világos, hogy a

\mathrm{pr}_i:(x_1,x_2,...,x_i,...,x_n)\mapsto x_i

koordináta vagy projekciófüggvény lineáris, differenciálja minden u pontban saját maga és ennek mátrixa:

[\mathrm{grad}\,\mathrm{pr_i}]=\mathbf{J}^{\mathrm{pr}_i}(\mathbf{u})=\begin{bmatrix}0 & 0 & ... & 1 & ...& 0\end{bmatrix}

ahol az 1 az i-edik helyen áll. Másként

\partial_kx_i=\delta_{ki}

ahol

\delta_{ij}=\left\{\begin{matrix}1, \mbox{ ha }i=j\\0, \mbox{ ha }i\ne j \end{matrix}\right.

azaz a Kronecker-féle δ szimbólum.

Egyváltozós illetve valós értékű függvény deriváltja

Függvénykompozíció differenciálja

Tétel. Legyen g: Rn\to Rm, az u-ban differenciálható, f: Rm\to Rk a g(u)-ban differenciálható függvény, u ∈ int Dom(f \circ g). Ekkor az

f\circ g differenciálható u-ban és
 \mathrm{d}(f\circ g)(u)=\mathrm{d}f(g(u))\circ\mathrm{d}g(u)

Bizonyítás. Alkalmas ε, A és η B párral, minden x ∈ Dom(f \circ g)-re:

f(g(x))=f(g(u))+\mathcal{A}(g(x)-g(u))+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+\mathcal{A}(\mathcal{B}(x-u)+\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+\mathcal{A}(\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+(\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||)||x-u||

Innen leolvasható a differenciál és a másodrendben eltűnő mennyiség vektortényezője, az

\varepsilon_{f\circ g}(x)=\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||

melyben az első tag a 0-hoz tart, mivel a lineáris leképezés a 0-ban folytonos, és η a 0-hoz tart az u-ban. A második tag nulla szor korlátos alakú, hiszen a lineáris leképezés Lipschitz-tuladonsága folytán B minden egységvektoron korlátos értéket vesz fel.

Ennek a tételnek a legegyszerűbb, de már vektorokat tartalmazó formáját írja át "fogyasztható" formába az alábbi

Következmény. Ha g: Rn\to R, az u-ban differenciálható, f: R\to R a g(u)-ban differenciálható függvény, u ∈ int Dom(f \circ g), akkor

f\circ g differenciálható u-ban és
 \mathrm{grad}(f\circ g)(u)=f'(g(u)).\mathrm{grad}\,g(u)

Ahol . a skalárral való szorzást jelöli.

1. Példa

\Phi(\mathbf{r})=|\mathbf{r}|=\sqrt{\mathbf{r}^2}

Először a gradienst számítjuk ki. Mivel a gyökfüggvény nem differenciálható a 0-ban, ezért a differenciál csak nemnulla r-re számítható ki. 0-ban a függvény tényleg nem differenciálható, mert a parciális deriváltak nem léteznek.

\Phi=\sqrt{.}\circ (.)^2\,

és

\sqrt{.}\,'=\frac{1}{2\sqrt{.}} illetve \mathrm{grad}\, \mathbf{r}^2=2\mathbf{r}\,

Ezért

\mathrm{grad}\,\Phi(\mathbf{r})=\sqrt{.}'(\mathbf{r}^2). \mathrm{grad}\,\mathbf{r}^2=\frac{1}{2\sqrt{\mathbf{r}^2}}\cdot 2\mathbf{r}=\frac{\mathbf{r}}{|\mathbf{r}|}

Ha valakinek a differenciál leképezés kell, akkor pedig:

\mathrm{d}\sqrt{v}:y\mapsto \frac{1}{2\sqrt{v}}\cdot y
v=\mathbf{r}^2\,
\mathrm{d}\mathbf{r}^2:\mathbf{x}\mapsto 2\mathbf{r}\cdot \mathbf{x}

Ezek kompozíciója:

\mathrm{d}\Phi(\mathbf{r}):\mathbf{x}\mapsto \frac{1}{2\sqrt{\mathbf{r}^2}}.2\mathbf{r}\cdot\mathbf{x}=\frac{\mathbf{r}}{|\mathbf{r}|}\cdot\mathbf{x}

Szemléleti okokból lényeges, hogy itt . a skalárral való szorzás, \cdot a skaláris szorzás.

2. Példa

\Psi(\mathbf{r})=|\mathbf{r}|^{\alpha}
\mathrm{d}\Psi(\mathbf{r}):\mathbf{x}\mapsto \alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}\cdot\mathbf{x}

illetve a gradiens:

\mathrm{grad}\,|\mathbf{r}|^\alpha=\alpha|\mathbf{r}|^{\alpha-1}.\frac{\mathbf{r}}{|\mathbf{r}|}


Skalárfüggvények szorzata

λ, μ: H \to R, ahol HRn és az uH-ban mindketten differenciálhatók, akkor λμ is és

[\mathrm{d}(\lambda\mu)(u)]_{1j}=\partial_j(\lambda\mu)=\mu\partial_j\lambda+\lambda\partial_j\mu=[\mu(u).\mathrm{grad}\,\lambda(u)+\lambda(u).\mathrm{grad}\,\mu(u)]_{j}

azaz

\mathrm{grad}(\lambda\mu)(u)=\mu(u).\mathrm{grad}\,\lambda(u)+\lambda(u).\mathrm{grad}\,\mu(u)

Példa

Számoljuk ki r2 deriváltját a szorzat szabálya szerint.

Egyrészt, ha r0, akkor

\mathrm{grad}\,\mathbf{r}^2=\mathrm{grad}\,|\mathbf{r}|\cdot|\mathbf{r}|=2|\mathbf{r}|.\mathrm{grad}|\mathbf{r}|=2|\mathbf{r}|.\frac{\mathbf{r}}{|\mathbf{r}| } =2\mathbf{r}\,

Másrészt, ha r = 0, akkor

 \mathbf{r}^2=0+\mathbf{0}\cdot\mathbf{r}+|\mathbf{r}|\cdot |\mathbf{r}|\,

minden r-re fennáll, így grad(id2)(0) = 0 alkalmas az ε(r)=|r|-rel, tehát r2 differenciálható 0-ban is.

a × ... operátor

Differenciálható-e és ha igen mi a differenciálja, divergenciája, rotációja a

\mathbf{v}:\mathbf{R}^3\to\mathbf{R}^3;\quad \mathbf{v}(\mathbf{r})=\mathbf{a}\times\mathbf{r}

leképezésnek, ahol a előre megadott konstans vektor.

Megoldás

Az a × ..., azaz az

\mathbf{a}\times\mathrm{I}\,

(itt I az identitás leképezés) leképezés lineáris, minthogy a vektoriális szorzás mindkét változójában lineáris (vLin(R3;R3)), így differenciálható és differenciálja saját maga:

\mathrm{d}(\mathbf{a}\times\mathrm{I})(\mathbf{r})=\mathbf{a}\times\mathrm{I}

azaz

(\mathrm{d}(\mathbf{a}\times\mathrm{I})(\mathbf{r}))\mathbf{h}=\mathbf{a}\times\mathbf{h}

minden h és rR3 vektorra.

Jacobi-mátrixa (a sztenderd bázisbeli mátrixa) tetszőleges (x,y,z) pontban:

\mathrm{J}^{\mathbf{a}\times\mathrm{I}}(x,y,z)=
\begin{bmatrix}
\;\,0 & -a_3& \;\;\,a_2\\
\;\;\,a_3 & \;\,0 & -a_1\\
-a_2 & \;\;\,a_1& \;\,0\\
\end{bmatrix}

Mivel a főátlóbeli elemek mind nullák, ezért ebből rögtön következik, hogy div(a × I)(r) = 0.

[\mathrm{rot}\,\mathbf{v}]_i=\varepsilon_{ijk}\partial_j\varepsilon_{klm}a_lx_m=\varepsilon_{ijk}\varepsilon_{klm}a_l\partial_j x_m=\varepsilon_{ijk}\varepsilon_{klm}a_l\delta_{jm}=\varepsilon_{ijk}\varepsilon_{klj}a_l=
=\delta_{kk}\delta_{il}a_l-\delta_{ki}\delta_{lk}a_l=3a_i-a_i=2a_i\,

azaz rot v (r) = 2a. Az előbb felhasználtuk a kettős vektoriális szorzatra vonatkozó kifejtési tétel indexes alakját, a

\varepsilon_{ijk}\varepsilon_{klm}=\delta_{jm}\delta_{li}-\delta_{jl}\delta_{im}\,

ami azt mondja, hogy ha az ijk és klm-ben a nem azonos párok jó sorrendben következnek, akkor az epszolon 1-et, ha rossz sorrendben, akkor -1-et ad.


a \cdot ... operátor

Differenciálható-e és ha igen mi a differenciálja

\Phi:\mathbf{R}^3\to\mathbf{R};\quad \Phi(\mathbf{r})=\mathbf{a}\cdot\mathbf{r}

leképezésnek, ahol a előre megadott konstans vektor.

Megoldás

Skalártér lévén Φ gradiensét kell kiszámolnunk. Mivel ez is lineáris leképezés, ezért differenciálható és differenciálja saját maga, azaz a gradiens vektor pont a:

\mathrm{grad}\,(\mathbf{a}\cdot\mathbf{r})=\mathbf{a}

Ezt persze indexes deriválással is kiszámítható:

[\mathrm{grad}\,\Phi]_i=\partial_ia_kx_k=a_k\partial_ix_k=a_k\delta_{ik}=a_i\,

További példa skalárfüggvényre

Hatérozzuk meg a Φ

\Phi:\mathbf{R}^3\to\mathbf{R};\quad \Phi(\mathbf{r})=|\mathbf{i}\times\mathbf{r}|

(ahol i az x irányú egységvektor, |.| a vektor hossza) függvény szintvonalait, differenciálhatóságát, gradiensét!

Megoldás

Érdemes koordinátás írásmódra áttérni, hiszen az i vektor úgy is a koordinátarendszerhez kapcsolódik. A vektoriális szorzás definíciója miatt

\Phi(x,y,z)=\Phi(\mathbf{r})=|\mathbf{r}|\cdot\sin(\mathbf{i},\mathbf{r})_\angle=\sqrt{y^2+z^2}

Tehát azok a pontok vannak azonos szintfelületen, melyeknek az [yz] síkra vett vetületük azonos hosszúságú (i × r hossza az i-re merőleges komponense r-nek). Az

y2 + z2 = 0

egyenlettel megadott pontokban (másként: y = 0 & z = 0 & x tetszőleges) a függvény nem differenciálható, ugyanis a Φ=0 szintfelület elfajúlt módon csak egy egyenes, az x tengely, így a gradiens vektor iránya nem egyértelmű. Ezt azzal is igazolhatjuk, ha vesszük ezekben a pontokban például az y irányú parciális függvényt:

\Phi(x_0,0+t,0)=\sqrt{t^2}=|t|

azaz az (x0,0,0) pontokhoz tartozó Φ(x0, . ,0) parciális függvény nem differenciálható a 0-ban.

Máshol a gradiensvektor, a parciális deriváltakat kiszámítva

\mathrm{grad}\,\Phi(x,y,z)=\left(0,\frac{y}{\sqrt{y^2+z^2}}, \frac{z}{\sqrt{y^2+z^2}}\right)

vagy másként:

\mathrm{grad}\,\Phi(\mathbf{r})=\mathbf{i}\times \frac{\mathbf{i}\times \mathbf{r}}{|\mathbf{i}\times \mathbf{r}|}

Megjegyezzük, hogy ehhez még a függvénykompozíció deriválási szabályával is lejuthattunk volna:

\mathrm{grad}\,\Phi(\mathbf{r})=\mathrm{grad}\sqrt{(\mathbf{i}\times\mathbf{r})^2}=\frac{1}{2\sqrt{(\mathbf{i}\times\mathbf{r})^2}}\cdot 2(\mathbf{i}\times\mathbf{r})\times(-\mathbf{i})

Teljes és parciális differenciálhatóság

Ha az f:Rn\to Rm függvény differenciálható az u pontban, akkor ott minden parciális deriváltja létezik és teljesül [(df(u))ej]i = ∂jfi(u). Azaz:

teljes differenciálhatóság \Longrightarrow parciális differenciálhatóság

de ez fordítva már nem igaz:

parciális differenciálhatóság \not\Rightarrow teljes differenciálhatóság

Erre vonatkozik a két alábbi példa.

Nem folytonos függvény létező parciális deriváltakkal

Tekintsük az

f(x,y)=\left\{\begin{matrix}\frac{xy}{x^2+y^2}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.
 set pm3d
set size 0.8,0.8 set xrange [-1:1] set yrange [-1:1] set zrange [-2:2] set view 50,30,1,1 unset xtics unset ytics unset ztics unset key unset colorbox splot x*y/(x*x+y*y)

(0,0)-ban a parciális függvények az azonosan 0 függvény, mely persze deriválható a 0-ban, de a függvény még csak nem is folytonos (0,0)-ban, mely szükséges feltétele a teljes differenciálhatóságnak.


További példa

f(x,y)=\sqrt[3]{x^3+y^3}

Folytonos parciális differenciálhatóság

Megfordításról a következő esetben beszélhetünk.

Tétel. Ha az f:Rn\to Rm függvény minden parciális deriváltfüggvénye létezik az u egy környezetében és u-ban a parciális deriváltak folytonosak, akkor u-ban f differenciálható. (Sőt, folytonosan differenciálható.)

Bizonyítás. Elegendő az m = 1 esetet vizsgálni. Továbbá a bizonyítás elve nem változik, ha csak az n = 2 esetet tekintjük. Legyen x az u mondott környezetéből vett pont, és x = (x1,x2), v=(u1,x2), u=(u1,u2) Ekkor az [x,v] szakaszon ∂1f-hez a Lagrange-féle középértéktétel miatt létezik olyan ξ(x1)∈[x1,u1] szám, és a [v,u] szakaszon ∂2f-hez ζ(x2)∈[x2,u2] szám, hogy

f(x)-f(u)=f(x)-f(v)+f(v)-f(u)=\,
=\partial_1 f(\xi(x_1),x_2)(x_1-u_1)+\partial_2 f(u_1,\zeta(x_2))(x_2-u_2)=
=\partial_1f(u)(x_1-u_1)+\partial_2f(u)(x_2-u_2)+
+(\partial_1 f(\xi(x_1),x_2)-\partial_1f(u))(x_1-u_1)+(\partial_2 f(u_1,\zeta(x_2))-\partial_2f(u))(x_2-u_2)

itt az

\varepsilon_1(x)=\partial_1 f(\xi(x_1),x_2)-\partial_1f(u) és \varepsilon_2(x)=\partial_2 f(x_1,\zeta(x_2))-\partial_2f(u)

függvények folytonosak u-ban (még ha a ξ, ζ függvények nem is azok), és értékük az u-ban 0. Világos, hogy ez azt jelenti, hogy f differenciálható u-ban.

Világos, hogy a parciális deriváltak folytonossága szükséges a fenti tételben. Az alábbi példában léteznek a parciális deriváltfüggvények az u egy környzetében, de az u-ban nem folytonosak.

Nem differenciálható, nem folytonosan parciálisan differenciálható függvény

f(x,y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^2+y^2}}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.

parciális deriváltfüggvényei léteznek:

\frac{\partial f(x,y)}{\partial x}=\frac{y}{\sqrt{x^2+y^2}}-\frac{x^2y}{\sqrt{(x^2+y^2)^3}}

a másik hasonlóan. A 0-ban 0 mindkettő, de az (0,1/n) mentén a 0-ba tartva az 1-hez tart, ami nem 0.

Differenciálható, de nem folytonosan parciálisan differenciálható

A differenciálhatóság azonban nem elég ahhoz, hogy a parciális deriváltak folytonosak legyenek.

Az

f(x,y)=\left\{\begin{matrix}(x^2+y^2)\sin\cfrac{1}{x^2+y^2}, & \mbox{ha} & (x,y)\ne (0,0)\\\\
0, & \mbox{ha} & (x,y) =(0,0)
\end{matrix}\right.

differenciálható, hiszen ez az

f(\mathbf{r})=\left\{\begin{matrix} \mathbf{r}^2\cdot\sin(|\mathbf{r}|^{-2}) & \mbox{ha} & \mathbf{r}\ne \mathbf{0}\\\\
\mathbf{0}, & \mbox{ha} & \mathbf{r}= \mathbf{0}\end{matrix}\right.

függvény és r0-ban:

\mathrm{grad}(f)=\sin(|\mathbf{r}|^{-2}).\mathrm{grad}\,\mathbf{r}^2+\mathbf{r}^2.\mathrm{grad}\,\sin(|\mathbf{r}|^{-2})=
=\sin(|\mathbf{r}|^{-2}).2\mathbf{r}+\mathbf{r}^2\cdot\cos(|\mathbf{r}|^{-2})\cdot(-2)|\mathbf{r}|^{-3}.\frac{\mathbf{r}}{|\mathbf{r}|}

és grad f nem korlátos. Ez persze a parciális deriváltakon is megátszik: azok sem korlátosak.

Indexes deriválás

Most csak a sokféle szorzat deriváltjának értékét számítjuk ki. Minden esetben igazolható, hogy ha a formulákban szereplő összes derivált létezik, akkor a formula érvényes (sőt, ha a függvények az adott pontban differenciálhatók, akkor a szorzat is differenciálható az adott pontban). Az mátrixelemeket indexesen számítjuk.

Feltéve például, hogy az f többváltozós skalárfüggvény parciálisan differenciálható, a gradiens elemeit így nyerjük:

[\mathrm{grad}\,f]_i=\partial_if\,

1. Példa

Ha f(r) = r2, akkor

\mathbf{r}^2=\sum\limits_{k=1}^3 [\mathbf{r}]_k[\mathbf{r}]_k=\sum\limits_{k=1}^3 x_kx_k=[\mathrm{Einstein\;konv.}]\;x_kx_k
[\mathrm{grad}\,f]_i=\partial_ix_kx_k\,=x_k\partial_ix_k+x_k\partial_ix_k\,

de a koordinátafüggvények deriváltjairól tudjuk, hogy azoknak az értékét a Kronecker-delta adja:

 \partial_ix_k=\delta_{ik}=\left\{\begin{matrix}1,& \mathrm{ha} & i=k\\ 0,& \mathrm{ha} & i\ne k\end{matrix}\right.

azaz

[\mathrm{grad}\,f]_i=2x_k\delta_{ik}=2x_i=[2\mathbf{r}]_i\,

tehát parciálisan differenciálható minden pontban és a Jacobi-mártix elemei a fentiek.

2. Példa

Ha f(r) = ar, akkor

[\mathrm{grad}\,f]_i=\partial_ia_kx_k\,=a_k\partial_ix_k=a_k\delta_{ik}\,=a_i=[\mathbf{a}]_i

3. Példa

Ha f(r) = |r|α, akkor

[\mathrm{grad}\,f]_i=\partial_i(x_kx_k)^{\alpha/2}\,=\partial_i(x_k)^{\alpha}=\frac{\alpha}{2}(x_kx_k)^{\frac{\alpha}{2}-1}2\delta_{ik}x_k\,

itt ne feledjük, hogy k-ra szummázunk és hogy az összetett tényezőben a skaláris szorzat szerepel:

[\mathrm{grad}\,f]_i=\alpha(x_kx_k)^{\frac{\alpha}{2}-1}x_i\,=\left[\alpha|\mathbf{r}|^\alpha\frac{\mathbf{r}}{\mathbf{r}^2}\right]_i=\left[\alpha|\mathbf{r}|^{\alpha-1}\frac{\mathbf{r}}{|\mathbf{r}|}\right]_i

tehát parciálisan differenciálható minden pontban és a Jacobi-mártix elemei a fentiek.

Deriválttenzor és invariánsai

Ha A az f:Rn\to Rn leképezés differenciálja az u pontban, akkor A-t deriválttenzornak nevezzük. Minden tenzor egyértelműen előáll egy szimmetrikus és egy antiszimmetrikus tenzor összegeként:

\mathbf{A}=\mathbf{A}_{s}+\mathbf{A}_a\,

Ebből a szimmetrikus rész főátlbeli elemeinek összege minden bázisban ugyanaz a skaláris érték, melyet a tenzor nyomának, illetve a függvény divergenciájának nevezzük:

\mathrm{div}(f)(u)=\mathrm{trace}(\mathbf{A}) illetve \mathrm{div}(f)=\sum\limits_{i=1}^n\partial_i f_i=*\partial_i f_i*

Az utóbbi írásmód a koordinátás alakban az úgy nevezett Einstein-féle jelölési konvenció, amelynek elve, hogy a kétszer stereplő indexekre automatikusan szumma értendő.

Példa

\mathrm{div}\,\mathbf{r}=\partial_kx_k=\delta_{kk}=\mathrm{dim}(\mathbf{R}^n)=n\,

f:R3\to R3 esetben a tenzor antiszimmetrikus részéhez egyértelműen létezik egy olyan a vektor, hogy minden r-re:

\mathbf{A}_a\mathbf{r}=\mathbf{a}\times\mathbf{r}

mely vektort az f rotációjának nevezzük:

\mathrm{rot}f(u)\, és [\mathrm{rot}f(u)]_i=\sum\limits_{j,k=1}^3\varepsilon_{ijk}\partial_j f_k=*\varepsilon_{ijk}\partial_j f_k*

ahol

\varepsilon_{ijk}=\left\{\begin{matrix}
1, & \mbox{ha} & (ijk)\in\{(123),(231),(312)\} \\
-1, & \mbox{ha} & (ijk)\in\{(321),(213),(132)\} \\
0, & \mbox{egyebkent}
\end{matrix}\right.

a Levi-Civita-szimbólum.

Skalárfüggvénnyel való szorzás

λ: H \to R, f:H \to Rm, ahol HRn és az uH-ban mindketten differenciálhatók, akkor λ.f is és

[\mathrm{d}(\lambda.f)(u)]_{ij}=\partial_j(\lambda.f)=\partial_j\lambda f_i=f_i\partial_j\lambda+\lambda \partial_jf_i

azaz

\mathrm{d}(\lambda.f)(u)=f(u)\scriptstyle{\otimes}\mathrm{grad}\lambda(u)+\lambda(u).\mathrm{d}f(u)\,

ahol \scriptstyle{\otimes} a diadikus szorzat, melynek koordinátamátrixa egy oszlopvektor (balról) és egy sorvektor (jobbról) mátrixszorzatából adódik. Ez ritkán kell teljes egészében, a két invariáns (rot-nál csak 3×3-as esetben) a gyakoribb.

\mathrm{div}(\lambda.f)(u)=f(u)\cdot \mathrm{grad}\lambda(u)+\lambda(u)\cdot \mathrm{div}f(u)
[\mathrm{rot}(\lambda.f)(u)]_i=\varepsilon_{ijk}\partial_j\lambda f_k=\varepsilon_{ijk}(\partial_j\lambda)f_k+\lambda\varepsilon_{ijk}\partial_jf_k=
=[\mathrm{grad}\lambda(u)\times f(u)+\lambda(u).\mathrm{rot}f(u)]_i

Vektorfüggvények skaláris szorzata

f,g:H \to Rm, ahol HRn és az uH-ban mindketten differenciálhatók, akkor f\cdotg is és

[\mathrm{d}(f\cdot g)(u)]_{1j}=\partial_j(f\cdot g)=\partial_j f_kg_k=f_k\partial_j g_k+g_k \partial_j f_k

azaz

\mathrm{d}(f\cdot g)(u)=(f(u)\cdot)\circ \mathrm{d}g(u)+(g(u)\cdot)\circ \mathrm{d}f(u)

illetve a Jacobi-mátrixszal:

\mathbf{J}^{f\cdot g}(u)=[f(u)]^\mathrm{T}\cdot \mathbf{J}^g(u) +
[g(u)]^\mathrm{T}\cdot \mathbf{J}^f(u)

ahol [.]T az oszlopvektor transzponáltját, (v\cdot) pedig a v vektorral történő skaláris szorzás operátorát jelöli.

Házi feladat

  • f_n(x,y)=\frac{x^ny}{x^2+y^2}\quad f_n(0,0)=0 függvényosztály folytonossága parciális és totális deifferenciálhatósága, folytonos parciális és totális differenciálhatósága


5. gyakorlat 7. gyakorlat
Személyes eszközök