Matematika A2a 2008/7. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Példák)
(Példa)
242. sor: 242. sor:
  
 
===Példa===
 
===Példa===
 +
Határozzuk meg a síkon az origó távolságát egy adott egyenesől!
  
 +
Legyen az egyenes egyenlete
 +
:<math>Ax+By=C\,</math>
 +
(nyilván A és B nem egyszerre nulla, mert (A,B) nomálvektor.) A keresett szám az origó és az egyenes pontjai közötti távolságok közül a legkisebb.
  
 +
Tehát keressük a
 +
:<math>d(x,y)=\sqrt{x^2+y^2}\,</math>
 +
kétváltozós leképezés minimumát az
 +
:<math>Ax+By=C\,</math>
 +
feltétel mellett.
 +
 +
''Megjegyzés.'' Ez a minimum biztosan létezik, mert ha P az egyenes egy tetszőlegesen rögzített pontja, akkor az OP távolság kétszeresénél közelebb lesz a keresett szélsőértékhely. A feladat tehát az 2<math>\cdot</math>OP sugarú zárt gömb és az egyenes közös pontjain értelmezett, fenti d(x,y) hozzárendelési utasítású függvény szélsőértékének meghatérozása. d kompakt halmazon folytonos, így Weierstrass tétele miatt felveszi abszolút minimumát.
 +
 +
Lagrange módszere szerint a feltételi egyenlet nullára redukált alakja:
 +
:<math>f(x,y)=Ax+By-C=0\,</math>
 +
ezt a leképezést kell hozzávenni a multiplikátorral szorozva a függvényhez:
 +
:<math>\Phi(x,y,\lambda)=\sqrt{x^2+y^2}+\lambda.(Ax+By-C)\,</math>
 +
Az szélsőérték szükségességét vizsgálva:
 +
:<math>\mathrm{grad}\,\Phi(x,y,\lambda)=\left(\frac{x}{\sqrt{x^2+y^2}}+\lambda.A,\frac{y}{\sqrt{x^2+y^2}}+\lambda.B,Ax+By-C\right)=(0,0,0)</math>
 +
Az utolsó 0 lényegében a ''feltételi egyenlet'' megismétlését jelenti. &lambda; kiesik, ha az első "egyenlet" B-vel, a másodikat A-val beszorozzuk. Ebből:
 +
:<math>Bx-Ay=0\,</math>
 +
és a feltételi egyenlet:
 +
:<math>Ax+By=C\,</math>
 +
Innen
 +
:<math>(x,y)=\left(\frac{AC}{\sqrt{A^2+B^2}}, \frac{BC}{\sqrt{A^2+B^2}}\right)</math>
 +
Annak eldöntése, hogy ez valóban minimumhely-e, a második derivált próbára hárulna, de az nem tudja eldönteni mert (mint kiderülne) a Hesse-mátrix nem nem definit.
 +
:<math>\mathrm{H}^{\Phi}(x,y,\lambda)=
 +
\begin{pmatrix}
 +
\frac{1}{\sqrt{x^2+y^2}}-\frac{x^2}{\sqrt{x^2+y^2}^3} & - \frac{xy}{\sqrt{x^2+y^2}^3}& A\\
 +
- \frac{xy}{\sqrt{x^2+y^2}^3}& \frac{1}{\sqrt{x^2+y^2}}-\frac{y^2}{\sqrt{x^2+y^2}^3} & B\\
 +
A & B & 0
 +
\end{pmatrix}</math>
 +
az adott pontban ez
 +
:<math>\mathrm{H}^{\Phi}(x,y,\lambda)=
 +
\begin{pmatrix}
 +
\frac{1}{|C|}-\frac{A^2}{|C|(A^2+B^2)} & - \frac{AB}{|C|(A^2+B^2)}& A\\
 +
- \frac{AB}{|C|(A^2+B^2)}& \frac{1}{|C|}-\frac{B^2}{|C|(A^2+B^2)} & B\\
 +
A & B & 0
 +
\end{pmatrix}</math>
 +
A bal felső elem pozitív, de a 2&times;2-es determináns nulla.
 +
 +
 +
 +
  
 
    
 
    

A lap 2008. április 10., 10:46-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

Tartalomjegyzék

a × ... operátor

Differenciálható-e és ha igen mi a differenciálja, divergenciája, rotációja a

\mathbf{v}:\mathbf{R}^3\to\mathbf{R}^3;\quad \mathbf{v}(\mathbf{r})=\mathbf{a}\times\mathbf{r}

leképezésnek, ahol a előre megadott konstans vektor.

Megoldás

Az a × ..., azaz az

\mathbf{a}\times\mathrm{I}\,

(itt I az identitás leképezés) leképezés lineáris, minthogy a vektoriális szorzás mindkét változójában lineáris (vLin(R3;R3)), így differenciálható és differenciálja saját maga:

\mathrm{d}(\mathbf{a}\times\mathrm{I})(\mathbf{r})=\mathbf{a}\times\mathrm{I}

azaz

(\mathrm{d}(\mathbf{a}\times\mathrm{I})(\mathbf{r}))\mathbf{h}=\mathbf{a}\times\mathbf{h}

minden h és rR3 vektorra.

Jacobi-mátrixa (a sztenderd bázisbeli mátrixa) tetszőleges (x,y,z) pontban:

\mathrm{J}^{\mathbf{a}\times\mathrm{I}}(x,y,z)=
\begin{bmatrix}
\;\,0 & -a_3& \;\;\,a_2\\
\;\;\,a_3 & \;\,0 & -a_1\\
-a_2 & \;\;\,a_1& \;\,0\\
\end{bmatrix}

Mivel a főátlóbeli elemek mind nullák, ezért ebből rögtön következik, hogy div(a × I)(r) = 0.

[\mathrm{rot}\,\mathbf{v}]_i=\varepsilon_{ijk}\partial_j\varepsilon_{klm}a_lx_m=\varepsilon_{ijk}\varepsilon_{klm}a_l\partial_j x_m=\varepsilon_{ijk}\varepsilon_{klm}a_l\delta_{jm}=\varepsilon_{ijk}\varepsilon_{klj}a_l=
=\delta_{kk}\delta_{il}a_l-\delta_{ki}\delta_{lk}a_l=3a_i-a_i=2a_i\,

azaz rot v (r) = 2a. Az előbb felhasználtuk a kettős vektoriális szorzatra vonatkozó kifejtési tétel indexes alakját, a

\varepsilon_{ijk}\varepsilon_{klm}=\delta_{jm}\delta_{li}-\delta_{jl}\delta_{im}\,

ami azt mondja, hogy ha az ijk és klm-ben a nem azonos párok jó sorrendben következnek, akkor az epszolon 1-et, ha rossz sorrendben, akkor -1-et ad.

a \cdot ... operátor

Differenciálható-e és ha igen mi a differenciálja

\Phi:\mathbf{R}^3\to\mathbf{R};\quad \Phi(\mathbf{r})=\mathbf{a}\cdot\mathbf{r}

leképezésnek, ahol a előre megadott konstans vektor.

Megoldás

Skalártér lévén Φ gradiensét kell kiszámolnunk. Mivel ez is lineáris leképezés, ezért differenciálható és differenciálja saját maga, azaz a gradiens vektor pont a:

\mathrm{grad}\,(\mathbf{a}\cdot\mathbf{r})=\mathbf{a}

Ezt persze indexes deriválással is kiszámítható:

[\mathrm{grad}\,\Phi]_i=\partial_ia_kx_k=a_k\partial_ix_k=a_k\delta_{ik}=a_i\,

További példa skalárfüggvényre

Hatérozzuk meg a Φ

\Phi:\mathbf{R}^3\to\mathbf{R};\quad \Phi(\mathbf{r})=|\mathbf{i}\times\mathbf{r}|

(ahol i az x irányú egységvektor, |.| a vektor hossza) függvény szintvonalait, differenciálhatóságát, gradiensét!

Megoldás

Érdemes koordinátás írásmódra áttérni, hiszen az i vektor úgy is a koordinátarendszerhez kapcsolódik. A vektoriális szorzás definíciója miatt

\Phi(x,y,z)=\Phi(\mathbf{r})=|\mathbf{r}|\cdot\sin(\mathbf{i},\mathbf{r})_\angle=\sqrt{y^2+z^2}

Tehát azok a pontok vannak azonos szintfelületen, melyeknek az [yz] síkra vett vetületük azonos hosszúságú (i × r hossza az i-re merőleges komponense r-nek). Az

y2 + z2 = 0

egyenlettel megadott pontokban (másként: y = 0 & z = 0 & x tetszőleges) a függvény nem differenciálható, ugyanis a Φ=0 szintfelület elfajúlt módon csak egy egyenes, az x tengely, így a gradiens vektor iránya nem egyértelmű. Ezt azzal is igazolhatjuk, ha vesszük ezekben a pontokban például az y irányú parciális függvényt:

\Phi(x_0,0+t,0)=\sqrt{t^2}=|t|

azaz az (x0,0,0) pontokhoz tartozó Φ(x0, . ,0) parciális függvény nem differenciálható a 0-ban.

Máshol a gradiensvektor, a parciális deriváltakat kiszámítva

\mathrm{grad}\,\Phi(x,y,z)=\left(0,\frac{y}{\sqrt{y^2+z^2}}, \frac{z}{\sqrt{y^2+z^2}}\right)

vagy másként:

\mathrm{grad}\,\Phi(\mathbf{r})=\mathbf{i}\times \frac{\mathbf{i}\times \mathbf{r}}{|\mathbf{i}\times \mathbf{r}|}

Megjegyezzük, hogy ehhez még a függvénykompozíció deriválási szabályával is lejuthattunk volna:

\mathrm{grad}\,\Phi(\mathbf{r})=\mathrm{grad}\sqrt{(\mathbf{i}\times\mathbf{r})^2}=\frac{1}{2\sqrt{(\mathbf{i}\times\mathbf{r})^2}}\cdot 2(\mathbf{i}\times\mathbf{r})\times(-\mathbf{i})

Többváltozós függvény szélsőértéke

Szélsőérték szükséges feltétele

Tétel - Fermat-tétel - Legyen f: Rn \supset\!\to R, u ∈ int Dom(f), f differenciálható u-ban.

Ha u-ban f-nek (lokális) szélsőértéke van, akkor
\mathrm{grad}\,f(u)=0_{\mathbf{R}^n}\,

U.is: minden i-re az i-edik parciális függvénynek szélsőértéke van ui-ben, így az egyváltozós Fermat-tétel miatt ezeknek a deriváltja ui-ben 0, így a gradiens értéke 0.

Példa

f(x,y)=x^2y^2\,

Ennek gradiense:

\mathrm{grad}\,f(x,y)=(2xy^2,2yx^2)

Az

\left.
\begin{matrix} 
\mathrm{I.} & 2xy^2 & = & 0\\
\mathrm{II.} & 2yx^2 & = & 0\\
\end{matrix}
\right\}

egyenletrendszer megoldásai: x = 0, y tetszőleges ill. y = 0 és x tetszőleges. A szélsőértékek helyei csak ezek közül kerülhetnek ki és ezek valóban szélsőértékek is, mert ezeken a függvény 0-t vesz fel, ami a lehetséges legkisebb értéke.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot 5*x*x*y*y

Másodikderivált próba

Kétszer differenciálható függvényre vonatkozóan megfogalmazhatjuk a lokális maximum és minimum létezésének elégséges feltételét. Csak a kétváltozós függvényekkel foglalkozunk. Tegyük fel, hogy grad f(u) = 0 és Hf(u) az f Hesse-mátrixa

  1. ha det Hf(u) > 0 és ∂11f(u) < 0, akkor f-nek u-ban maximuma van
  2. ha det Hf(u) > 0 és ∂11f(u) > 0, akkor f-nek u-ban minimuma van
  3. ha det Hf(u) < 0, akkor f-nek biztosan nincs szélsőértéke, ún. nyeregpontja van
  4. ha det Hf(u) = 0, akkor a próba nem járt sikerrel, azaz további vizsgálatokat igényel annak eldöntése, hogy u szélsőérték hely-e.

Megjegyzések. Mivel kétváltozós esetben

\mathrm{det}\,\mathrm{H}^f(u)=\partial_{11}f(u)\cdot \partial_{22}f(u)-(\partial_{12}f(u))^2

ezért olyan eset nem létezik, hogy det Hf(u) > 0 és ∂11f(u) = 0.

Világos, hogy a másodikderivált tipikusan azoknál a függvényeknél jár sikerrel, melyeket egy másodfokú függvény közelít a legjobban (aszimptotikusan másodfokúak). Ha a függvény ennél magasabb fokú, akkor a második deriváltak eltűnnek és a Hesse-mártix elfajul (vagy legalább is tipikusan elfajul).

Ha tehát

\mathrm{H}^{f}(u)=\begin{pmatrix}
 A & B \\
 B & C
\end{pmatrix}, akkor \mathrm{det\,H}^{f}(u)=AC - B^2 ,

és így a tipikus példák a következők.

Példák

1. Ha B kicsi, azaz az AC-hez képest kis abszolútrétékű szám, akkor a szélsőérték irányába mozdul el a feladat.

f(x,y)=x^2+xy+y^2\,

Ekkor grad f = ( 2x + y , 2y + x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 1 \\
 1 & 2
\end{pmatrix}

azaz 4 - 1 = 3 > 0 és 2 > 0 miatt minimum.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x+x*y+y*y

2. Ha |B| nagy (azaz AC-hez képest nagy), akkor a bizonyosan nemszélsőérték irányába.

f(x,y)=x^2-3xy+y^2\,

Ekkor grad f = ( 2x + -3y , 2y + -3x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & -3 \\
 -3 & 2
\end{pmatrix}

azaz 4 - 9 = -5 < 0 miatt nincs szélsőérték: nyeregpont.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x -3*x*y+y*y

3. Negatív A és C-re és kis B-re:

f(x,y)=-x^2+xy-y^2\,

Ekkor grad f = ( -2x + 3y , -2y + 3x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 -2 & 1 \\
 1 & -2
\end{pmatrix}

azaz 4 - 1 = 3 > 0 és -2 < 0 miatt maximum.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot -x*x +x*y-y*y

4. Ha A és C előjele ellenkező, akkor rögtön következik, hogy nincs sz.é.

f(x,y)=x^2+xy-y^2\,

Ekkor grad f = ( 2x + y , -2y + x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 1 \\
 1 & -2
\end{pmatrix}

azaz -4 - 1 = -5 < 0 azaz nyeregpont.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot x*x +x*y-y*y

5. Atipikus eset, ha AC = B2. Ekkor nem jár sikerrel a próba:

f(x,y)=x^2+2xy+y^2\,

Ekkor grad f = ( 2x + 2y , 2y + 2x ) és

\mathrm{H}^{f}(x,y)=\begin{pmatrix}
 2 & 2 \\
 2 & 2
\end{pmatrix}

azaz 4 - 4 = 0, azaz határozatlan eset. De tudjuk, hogy

f(x,y)=(x+y)^2\,

ami pontosan akkor minimális, ha x = -y, azaz ezeken a helyeken van szélsőérték.

 set pm3d
set size 0.8,0.8
set xrange [-1:1]
set yrange [-1:1]
set zrange [-2:2]
set view 50,30,1,1
unset xtics
unset ytics
unset ztics
unset key
unset colorbox
splot (x+y)*(x+y)

Feltételes és tartományi szélsőérték

Feltétele szélsőérték feladat - Lagrange-multiplikátormódszer - Tegyük fel, hogy az u = F(x,y,z) skalárfüggvény szélsőértékét keressük az f(x,y,z) = c korlátozás (feltétel) mellett. Ekkor a következőképpen járunk el. A szükségesség szempontjából a feladat egyenértékű az

\Phi(x,y,z,\lambda)=F(x,y,z)+\lambda\cdot f(x,y,z)\,

négyváltozós szélsőérték feladat vizsgálatával.

Példa

Határozzuk meg a síkon az origó távolságát egy adott egyenesől!

Legyen az egyenes egyenlete

Ax+By=C\,

(nyilván A és B nem egyszerre nulla, mert (A,B) nomálvektor.) A keresett szám az origó és az egyenes pontjai közötti távolságok közül a legkisebb.

Tehát keressük a

d(x,y)=\sqrt{x^2+y^2}\,

kétváltozós leképezés minimumát az

Ax+By=C\,

feltétel mellett.

Megjegyzés. Ez a minimum biztosan létezik, mert ha P az egyenes egy tetszőlegesen rögzített pontja, akkor az OP távolság kétszeresénél közelebb lesz a keresett szélsőértékhely. A feladat tehát az 2\cdotOP sugarú zárt gömb és az egyenes közös pontjain értelmezett, fenti d(x,y) hozzárendelési utasítású függvény szélsőértékének meghatérozása. d kompakt halmazon folytonos, így Weierstrass tétele miatt felveszi abszolút minimumát.

Lagrange módszere szerint a feltételi egyenlet nullára redukált alakja:

f(x,y)=Ax+By-C=0\,

ezt a leképezést kell hozzávenni a multiplikátorral szorozva a függvényhez:

\Phi(x,y,\lambda)=\sqrt{x^2+y^2}+\lambda.(Ax+By-C)\,

Az szélsőérték szükségességét vizsgálva:

\mathrm{grad}\,\Phi(x,y,\lambda)=\left(\frac{x}{\sqrt{x^2+y^2}}+\lambda.A,\frac{y}{\sqrt{x^2+y^2}}+\lambda.B,Ax+By-C\right)=(0,0,0)

Az utolsó 0 lényegében a feltételi egyenlet megismétlését jelenti. λ kiesik, ha az első "egyenlet" B-vel, a másodikat A-val beszorozzuk. Ebből:

Bx-Ay=0\,

és a feltételi egyenlet:

Ax+By=C\,

Innen

(x,y)=\left(\frac{AC}{\sqrt{A^2+B^2}}, \frac{BC}{\sqrt{A^2+B^2}}\right)

Annak eldöntése, hogy ez valóban minimumhely-e, a második derivált próbára hárulna, de az nem tudja eldönteni mert (mint kiderülne) a Hesse-mátrix nem nem definit.

\mathrm{H}^{\Phi}(x,y,\lambda)=
\begin{pmatrix}
\frac{1}{\sqrt{x^2+y^2}}-\frac{x^2}{\sqrt{x^2+y^2}^3} & - \frac{xy}{\sqrt{x^2+y^2}^3}& A\\
 - \frac{xy}{\sqrt{x^2+y^2}^3}& \frac{1}{\sqrt{x^2+y^2}}-\frac{y^2}{\sqrt{x^2+y^2}^3} & B\\
A & B & 0
\end{pmatrix}

az adott pontban ez

\mathrm{H}^{\Phi}(x,y,\lambda)=
\begin{pmatrix}
\frac{1}{|C|}-\frac{A^2}{|C|(A^2+B^2)} & - \frac{AB}{|C|(A^2+B^2)}& A\\
 - \frac{AB}{|C|(A^2+B^2)}& \frac{1}{|C|}-\frac{B^2}{|C|(A^2+B^2)} & B\\
A & B & 0
\end{pmatrix}

A bal felső elem pozitív, de a 2×2-es determináns nulla.





6. gyakorlat 8. gyakorlat
Személyes eszközök