Matematika A2a 2008/7. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2009. április 2., 19:41-kor történt szerkesztése után volt.
Ez az szócikk a Matematika A2a 2008 alszócikke.

Tartalomjegyzék

Függvénykompozíció differenciálja

Tétel. Legyen g: Rn\to Rm, az u-ban differenciálható, f: Rm\to Rk a g(u)-ban differenciálható függvény, u ∈ int Dom(f \circ g). Ekkor az

f\circ g differenciálható u-ban és
 \mathrm{d}(f\circ g)(u)=\mathrm{d}f(g(u))\circ\mathrm{d}g(u)

Bizonyítás. Alkalmas ε, A és η B párral, minden x ∈ Dom(f \circ g)-re:

f(g(x))=f(g(u))+\mathcal{A}(g(x)-g(u))+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+\mathcal{A}(\mathcal{B}(x-u)+\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+\mathcal{A}(\eta(x)||x-u||)+\varepsilon(g(x))||g(x)-g(u)||)=
=f(g(u))+(\mathcal{A}\circ\mathcal{B})(x-u)+(\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||)||x-u||

Innen leolvasható a differenciál és a másodrendben eltűnő mennyiség vektortényezője, az

\varepsilon_{f\circ g}(x)=\mathcal{A}(\eta(x))+\varepsilon(g(x))||\mathcal{B}\frac{x-u}{||x-u||}+\eta(x)||

melyben az első tag a 0-hoz tart, mivel a lineáris leképezés a 0-ban folytonos, és η a 0-hoz tart az u-ban. A második tag nulla szor korlátos alakú, hiszen a lineáris leképezés Lipschitz-tuladonsága folytán B minden egységvektoron korlátos értéket vesz fel.

Ennek a tételnek a legegyszerűbb, de már vektorokat tartalmazó formáját írja át "fogyasztható" formába az alábbi

Következmény. Ha g: Rn\to R, az u-ban differenciálható, f: R\to R a g(u)-ban differenciálható függvény, u ∈ int Dom(f \circ g), akkor

f\circ g differenciálható u-ban és
 \mathrm{grad}(f\circ g)(u)=f'(g(u)).\mathrm{grad}\,g(u)

Ahol . a skalárral való szorzást jelöli.

Ugyanis, a deriváltak lineáris leképezések:

v\mapsto (\mathrm{d}g(u))v=(\mathrm{grad}\,(u))\cdot v\,
w\mapsto (\mathrm{d}f(x))w=f'(x)\cdot w\,

Ezek kompozíciója (f-et az x=g(u)-ban felírva):

(\mathrm{d}(f\circ g)(u))v=(\mathrm{d}f(g(u)))(\mathrm{d}g(u))v=f'(g(u)).(\mathrm{d}g(u))v=f'(g(u)).(\mathrm{grad}\,g(u))\cdot v\,

Hol diffható?

\Phi(r)=|r|=\sqrt{r^2}\,

(Útmutatás: abs'=sgn, a 0-án kívül.)

0-ban nem, mert a parciális deriváltak nem léteznek. Azon kívül:

Külső függvény:

f(x)=\sqrt(x)\,

nemnulla x-re:

f'(x)=\frac{1}{2}x^{-\frac{1}{2}}\,

A belső:

r^2\,

gradiense 2r.

Így:

\mathrm{grad}\,\sqrt{r^2}=\frac{1}{2}\frac{1}{\sqrt{r^2}}. 2r=\frac{r}{|r|}


Gömbszimmetrikus feldatok

Mi az

\Phi(r)=|r|^\alpha\quad\quad\alpha>0

függvény gradiense és differenciálja. Hol diffható?

0-ban α=1 vagy α<1 esetén biztosan nem diffható, mert a parciális deriváltak nem léteznek.

A külső függvény:

\,f(x)=x^\alpha
\,f'(x)=\alpha x^{\alpha-1}

A belső függvény: \,f(x)=|r|

Ez nem diffható 0-ban (mert a parciális deriváltjai nem léteznek), de máshol:

\mathrm{grad}\,|r|=\frac{r}{|r|}\,

Ekkor r≠0-ban:

\mathrm{grad}\,\Phi(r)=\alpha |r|^{\alpha-1}.\frac{r}{|r|}=\alpha r |r|^{\alpha-2}

Ha r=0 és α>1, akkor

\frac{|r|^\alpha-0-0}{|r|}=|r|^{\alpha-1}\to 0

Tehát a derivált

\mathrm{grad}\,\Phi(r)=\left\{\begin{matrix}0, &\mathrm{ha} & r=0\\\alpha r |r|^{\alpha-2}, &\mathrm{ha} & r\ne 0\end{matrix}\right.

Példa. r3|r|α milyen α-ra diffható mindenhol és mi a deriváltja?


Folytonos parciális differenciálhatóság

Megfordításról a következő esetben beszélhetünk.

Tétel. Ha az f:Rn\to Rm függvény minden parciális deriváltfüggvénye létezik az u egy környezetében és u-ban a parciális deriváltak folytonosak, akkor u-ban f differenciálható. (Sőt, folytonosan differenciálható.)

Bizonyítás. Elegendő az m = 1 esetet vizsgálni. Továbbá a bizonyítás elve nem változik, ha csak az n = 2 esetet tekintjük. Legyen x az u mondott környezetéből vett pont, és x = (x1,x2), v=(u1,x2), u=(u1,u2) Ekkor az [x,v] szakaszon ∂1f-hez a Lagrange-féle középértéktétel miatt létezik olyan ξ(x1)∈[x1,u1] szám, és a [v,u] szakaszon ∂2f-hez ζ(x2)∈[x2,u2] szám, hogy

f(x)-f(u)=f(x)-f(v)+f(v)-f(u)=\,
=\partial_1 f(\xi(x_1),x_2)(x_1-u_1)+\partial_2 f(u_1,\zeta(x_2))(x_2-u_2)=
=\partial_1f(u)(x_1-u_1)+\partial_2f(u)(x_2-u_2)+
+(\partial_1 f(\xi(x_1),x_2)-\partial_1f(u))(x_1-u_1)+(\partial_2 f(u_1,\zeta(x_2))-\partial_2f(u))(x_2-u_2)

itt az

\varepsilon_1(x)=\partial_1 f(\xi(x_1),x_2)-\partial_1f(u) és \varepsilon_2(x)=\partial_2 f(x_1,\zeta(x_2))-\partial_2f(u)

függvények folytonosak u-ban (még ha a ξ, ζ függvények nem is azok), és értékük az u-ban 0. Világos, hogy ez azt jelenti, hogy f differenciálható u-ban.

Világos, hogy a parciális deriváltak folytonossága szükséges a fenti tételben. Az alábbi példában léteznek a parciális deriváltfüggvények az u egy környzetében, de az u-ban nem folytonosak.

Nem differenciálható, nem folytonosan parciálisan differenciálható függvény

f(x,y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^2+y^2}}& \mbox{, ha }&(x,y)\ne (0,0)\\
0&\mbox{, ha }&(x,y)=(0,0)\end{matrix}\right.

parciális deriváltfüggvényei léteznek:

\frac{\partial f(x,y)}{\partial x}=\frac{y}{\sqrt{x^2+y^2}}-\frac{x^2y}{\sqrt{(x^2+y^2)^3}}

a másik hasonlóan. A 0-ban 0 mindkettő, de az (0,1/n) mentén a 0-ba tartva az 1-hez tart, ami nem 0.

f(x,y)=\left\{\begin{matrix}
0,& \mbox{ ha }(x,y)=(0,0)\\
\frac{xy(x^2-y^2)}{x^2+y^2},& \mbox{ ha }(x,y)\ne(0,0)
\end{matrix}\right.

A Young-tételnél beláttuk, hogy ekkor a 0-ban nem egyenlő a két vegyes parciális derivált. Most már azt is tudjuk miért. A függvény gradiense nem differenciálható totálisan a 0-ban. Ehhez elevenítsük föl, hogy

J^g(0,0)=H^f(0,0)=\begin{bmatrix}
0 & -1\\
1 & 0
\end{bmatrix}

ami a 90˚-os forgatás.

Számoljuk ki g értékét a (x,x) alakú pontokban:

\partial_1f(x,x)=\lim\limits_{t\to 0}\frac{f(x+t,x)-f(0,0)}{t}=\lim\limits_{t\to 0}\frac{(x+t)x((x+t)^2-x^2)}{t((x+t)^2+x^2)}=
\lim\limits_{t\to 0}\frac{(x+t)x(2tx+t^2)}{t(2x^2+2tx+t^2)}=\lim\limits_{t\to 0}\frac{(x+t)x(2x+t)}{2x^2+2tx+t^2}=\lim\limits_{t\to 0}=x
\partial_2f(x,x)=\lim\limits_{t\to 0}\frac{f(x,x+t)-f(0,0)}{t}=\lim\limits_{t\to 0}\frac{x(x+t)(x^2-(x+t)^2)}{t(x^2+(x+t)^2)}=
\lim\limits_{t\to 0}\frac{x(x+t)(-2tx-t^2)}{t(2x^2+2tx+t^2)}=-x

Tehát g(t,t)=(t,-t), és emiatt

\lim\limits_{t\to 0}\frac{g(t,t)-g(0,0)-J^g(0,0)\cdot (t,t)}{|t|}=\lim\limits_{t\to 0}\frac{(t,-t)-(-t,t)}{|t|}=\lim\limits_{t\to 0}\frac{(2t,-2t)}{|t|}=\lim\limits_{t\to 0}(2\mathrm{sgn}(t),-2\mathrm{sgn}(t))\ne (0,0)\,

márpedig ha g minden parciális deriváltja folytonos lenne a (0,0)-ban, akkor g totálisan is deriválható lenne.

Differenciálható, de nem folytonosan parciálisan differenciálható

A differenciálhatóság azonban nem elég ahhoz, hogy a parciális deriváltak folytonosak legyenek.

Az

f(x,y)=\left\{\begin{matrix}(x^2+y^2)\sin\cfrac{1}{x^2+y^2}, & \mbox{ha} & (x,y)\ne (0,0)\\\\
0, & \mbox{ha} & (x,y) =(0,0)
\end{matrix}\right.

differenciálható, hiszen ez az

f(\mathbf{r})=\left\{\begin{matrix} \mathbf{r}^2\cdot\sin(|\mathbf{r}|^{-2}) & \mbox{ha} & \mathbf{r}\ne \mathbf{0}\\\\
\mathbf{0}, & \mbox{ha} & \mathbf{r}= \mathbf{0}\end{matrix}\right.

függvény és r0-ban:

\mathrm{grad}(f)=\sin(|\mathbf{r}|^{-2}).\mathrm{grad}\,\mathbf{r}^2+\mathbf{r}^2.\mathrm{grad}\,\sin(|\mathbf{r}|^{-2})=
=\sin(|\mathbf{r}|^{-2}).2\mathbf{r}+\mathbf{r}^2\cdot\cos(|\mathbf{r}|^{-2})\cdot(-2)|\mathbf{r}|^{-3}.\frac{\mathbf{r}}{|\mathbf{r}|}

és grad f nem korlátos. Ez persze a parciális deriváltakon is megátszik: azok sem korlátosak.

Nevezetes függvénysorozat

  • f_n(x,y)=\frac{x^ny}{x^2+y^2}\quad f_n(0,0)=0 függvényosztály folytonossága parciális és totális deifferenciálhatósága, folytonos parciális és totális differenciálhatósága

Implicit függvény deriváltja

Implicit megadású függvényről akkor beszélünk, amikor egy függvény megadása nem (az explicit módon) y = f(x) alakban történik, hanem az x és y kapcsolatát egy mindkét változót tartalmazó

F(x,y) = 0 \,

egyenlet írja le. Például adjunk meg olyan függvényt, melynek grafikonja valamely kör egy szakasza. Az

x^2+y^2=1\,

egyenletű körből könnyű az y változót kifejezni, az \mbox{ }_{y=\sqrt{1-x^2}} és \mbox{ }_{y=-\sqrt{1-x^2}} alakokat kapjuk. Bonyolultabb esetekben, például a

\sin y =x\,

esetén semmi reményünk, hogy az y változóra valamilyen egyenletrendezéssel általános képletet kapjunk. Az ilyen példák miatt nevezik ezeket a típusú függvényeket implicit, avagy régi, választékos kifejezéssel élve bennrekedt függvényeknek. A differenciálszámítás szempontjából megelégedhetünk azzal, ha az implicit függvény deriváltját ki tudjuk számolni. Sok esetben ebből már következtethetünk a függvényre vagy annak viselkedésére is.

A modern analízis szemszögéből egy N × M \rightarrow K normált terek között ható F függvény aN és bM pontokhoz tartozó implicit függvényén olyan, az a egy U környezetén értelmezett és a b egy V környezetébe képező f:U \rightarrow V függvényt értünk, melyre f(a)=b és minden xU pont esetén rendelkezik az

F(x,f(x))=0\,

tulajdonsággal. Amelyet szavakban úgy fogalmazhatunk meg, hogy az F(x,y)=0 egyenletből az y változó kifejezhető y=f(x) alakban.

Most szorítkozzunk csak a kétváltozós esetre és tegyük fel, hogy létezik differenciálható implicit függvénye a differenciálható F függvénynek. Ekkor az F(x,y) függvény implicit függvénye az f(x), ha egy adott (u,v) pontban:

F(u,v)=0 és
minden az f értelmezési tartományába eső x-re F(x,f(x))≡0 és
f(u)=v,

akkor világos, hogy ha

0 ≡ φ(x) = F(x,f(x)) = (F\circ(id,f))(x) ,

akkor

φ'(x) ≡ 0

így tehát a függvénykompozíció deriválásának szabálya szerint:

\varphi'(u)=[\partial_1F(u,v),\partial_2F(u,v)]\cdot \begin{bmatrix}1\\f'(u)\end{bmatrix}=\partial_1 F(u,v)+\partial_2F(u,v)\cdot f'(u)\,=0

így

f'(u)=-\frac{\partial_1 F(u,v)}{\partial_2 F(u,v)} \,

Implicitfüggvény tétel

TételImplicitfüggvény-tétel R-beli implicit függvényre – Legyen F az R2 egy részhalmazán értelmezett, R-be képező differenciálható függvény, mely az értelmezési tartománya egy (a,b) belső pontjában folytonosan differenciálható, F(a,b) = 0 és

\partial_2 F(a,b)\neq 0

(azaz (a,b)-ben az y szerinti parciális deriváltja nem nulla). Ekkor van a-nak olyan I és b-nek olyan J környezete, hogy F-nek egyértelműen létezik az (a,b) párhoz tartozó f: I \rightarrow J implicit függvénye, mely erősen differenciálható a-ban és deriváltja:

f'(a)=-\frac{\partial_1 F(a,b)}{\partial_2 F(a,b)}

Vázlatos bizonyítás. I. Először megkonstruáljuk az y=y(x) függvényt. Létezik olyan I × J ⊆ Dom(F) az (a,b) körül, hogy ∂2F sehol sem nulla, azonos előjelű -- sőt feltehetjük, hogy pozitív. Ez amiatt van, hogy ∂2F(a,b) ≠ 0 és ∂2F folytonos.

Az y=y(x) implicit függvény létezése egyenértékű azzal, hogy

minden xI-re az F( x , . ) parciális függvénynek zérushelye van J-ben,

hiszen ekkor minden x-hez létezik olyan y ∈ J, hogy F(x,y)=0. Belátjuk, hogy minden ilyen x-hez egyetlen zérushelye van F( x , . )-nek.

Tekintsük a folytonos F( a , . ) parciális függvényt. A pozitívra választott y-szerinti deriváltból következik, hogy ez I-n szigorúan monoton növekvő. Mivel b-ben zérushelye van ( F(a,b)=0 ), ezért van olyan y2 > b pont, hogy ott F( a , . ) pozitív és y1 < b pont, hogy ott F( a , . ) negatív. Ekkor F folytonossága miatt van az (a,y1) pontnak olyan környezete, ahol F negatív és van az (a,y2) pontnak olyan környezete, ahol F pozitív. Most definiáljuk át I-t és J-t úgy, hogy I × J-n az F egy J-beli elem fölött mindenhol pozitív, egy J-beli elem alatt mindehol negatív értéket vegyen föl.

A praciális deriváltak folytonosságából az is következik, hogy minden x ∈ I-re az F( x , . ) függvény is szigorúan monoton növekvő, negatív és pozitív értéket is felvevő folytonos függvény, így a Bolzano-tétel alapján létezik yx zérushelye és mindegyiknek egyetlen zérushelye létezik.

II. Állítjuk, hogy a φ:I \rightarrow J, x \mapsto yx függvény implicit függvénye F-nek, azaz minden x ∈ I-re F(x,φ(x))=0.

Könnyen belátható, hogy φ folytonos a-ban, hiszen ha a-hoz közeledve mindig találnánk olyan x pontot, hogy φ(x) egy adott ε-nál mindig jobban eltér b-től, akkor φ(x) egy olyan környezetbe esne bele, ahol F mindenhol egy pozitív számnál nagyobb vagy mindenhol egy negatív számnál kisebb. Ám, F(x,φ(x))=0, így ez ellentmondana F folytonos tulajdonságának.

III. Végül az implicit függvény differenciálható a-ban, mert ha van (a,b)-ben érintősík, akkor az az érintőegyenesben metszi az [x,y] síkot.


Példák

Tekintsük a következő egyenletű síkgörbét:

x^5+xy+y^5=3\,

Nem lenne könnyű feladat kifejezni belőle y-t, mert az ötödfokú egyenletnek nincs általános megoldóképlete. Mivel a baloldal akárhányszor differenciálható, ezért joggal feltételezhetjük, hogy bizonyos pontokban létezik implicit függvénye. Tegyük fel, hogy φ ilyen függvény. Ekkor az egyenlet

x^5+x\varphi(x)+(\varphi(x))^5=3

alakú, melynek minden olyan x-nél, ahol φ differenciálható:

5x^4+\varphi(x)+x\varphi'(x)+5\varphi^4(x)\cdot\varphi'(x)=0

ahonnan a derivált: \varphi'(x)=-\frac{5x^4+\varphi(x)}{5\varphi^4(x)+x} vagy szimbolikusan: y'=-\frac{5x^4+y}{5y^4+x}. Alaposabb vizsgálatokkal kideríthető, hogy ez a derivált minden pontban létezik és negatív, így az implicit függvény mindenhol létezik és szigorúan monoton csökkenő. Vegyük észre, hogy a nevezőben lévő kifejezés pont ∂yF(x,y) és az implicit függvény létezésének feltétele pont a nevező nullától különböző volta.

Többváltozós eset

Ebben az esetben is az „érintősík” végtelenül közelítő tulajdonsága játszik majd fontos szerepet. Jól látható az összefüggés, ha feltesszük, hogy F egy Rn×Rm-en értelmezett affin függvény, azaz egy lineáris leképezés eltoltja. Ekkor

F(x,y) = F(a+h,b+k) = F(a,b)+dF1(a,b)h+dF2(a,b)k.

Amennyiben y = y(x) olyan, hogy y(a) = b és F(x,y(x)) = 0, akkor fennáll a 0 = dF1(a,b)h + dF2(a,b)k egyenlőség és k kifejezhető, amennyiben az A = dF2(a,b) mátrix invertálható. A B = dF1(a,b) jelöléssel ekkor

k = -(A-1\cdotB) h.

Általános esetben ez csak egy másodrendűen kicsiny tag hozzávételével lesz igaz, de az implicit függvény létezésének belátásához szükséges a fenti gondolatmenet is.

Banach-terek esetén (melyek akár végtelen dimenziósak is lehetnek) a tétel a következő.

TételImplicitfüggvény-tétel Banach-terekre – Legyen E, H, G Banach-terek, F:E × H \rightarrow G olyan függvény, mely (a,b) ∈ E × H-ban erősen differenciálható. Ha a ∂2F(a,b) lineáris leképezés injektív és az inverzével együtt folytonos, akkor egyértelműen létezik az F-nek egy az (a,b) párhoz tartozó f lokális implicit függvénye, ez erősen differenciálható a-ban és differenciálja:

df(a)=-(\partial_2 F(a,b))^{-1}\circ(\partial_1 F(a,b))

Vagy egy kevésbé absztrakt tétel:

TételImplicitfüggvény-tétel Rn-re – Legyen F:Rn×Rm\rightarrowRm folytonosan differenciálható függvény, (a,b) ∈ Rn×Rmolyanok, hogy F(a,b)=0 és \mbox{ }_{\det\left(\frac{\partial F_i(a,b)}{\partial y_k}\right)_{i,k=1,...,m}\ne 0}. Ekkor egyértelműen létezik F-nek egy az (a,b)-hez tartozó lokális implicit függvénye.


6. gyakorlat 8. gyakorlat
Személyes eszközök