Matematika A3a 2008/1. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Peano és Cauchy--Lipschitz-feltételek)
(Peano- és Cauchy--Lipschitz-feltétel)
(egy szerkesztő 8 közbeeső változata nincs mutatva)
79. sor: 79. sor:
 
:<math>y'(x)=-\frac{(\partial_x\Phi)(x,y(x))}{(\partial_y \Phi)(x,y(x))}=-\frac{-f(x)}{1/g(y(x))},\,</math>
 
:<math>y'(x)=-\frac{(\partial_x\Phi)(x,y(x))}{(\partial_y \Phi)(x,y(x))}=-\frac{-f(x)}{1/g(y(x))},\,</math>
 
'''3. Feladat.''' Oldjuk meg az <math>y'=ay\,</math> egyenletet.
 
'''3. Feladat.''' Oldjuk meg az <math>y'=ay\,</math> egyenletet.
 +
 +
''Mo.''y&equiv;0 megoldás. Ha semmilyen pontban y nem nulla, akkor ln |y|= ax +C, |y|=Ke<sup>ax</sup>, ennek differenciálható implicit függvényei (a Bolzano-tétel miatt): y=ce<sup>ax</sup> ahol c nemnulla valós szám; ha c=0 is megengedett, akkor az y=0 is beilleszthető a paraméteres megoldások közé. Valójában a feladat becsapás, mert ez nem szeparábilis egyenlet. Szeparálással megkaphatók megoldások, és mivel lineáris, ezért a megoldásai egydimenziós lineáris teret alkotnak, azaz egy nemnulla megoldásból az összes megoldás egy konstans szorzóval megkapható, tehát y=ce<sup>ax</sup> az összes megoldás. Továbbá az alábbi C--L-feltétel miatt a 0 értékű megoldás is egyértelmű, azaz ha valahol 0 a megoldás, akkor az csak az azonosan nulla lehet.
  
 
'''4. Feladat.''' <math>(1+x^3)dx - x^2ydy=0\,</math>
 
'''4. Feladat.''' <math>(1+x^3)dx - x^2ydy=0\,</math>
 +
Minden olyan intervallumon, melynek a 0 nem eleme szeparálva:
 +
:<math>y\,dy=\frac{1+x^3}{x^2}\,dx</math>
 +
:<math>\frac{1}{2}y^2=-\frac{1}{x}+\frac{1}{2}x^2+C</math>
  
==Peano és Cauchy--Lipschitz-feltételek==
+
==Peano- és Cauchy--Lipschitz-feltétel==
 
'''Tétel''' -- Peano-féle egzisztenciatétel -- Ha az f(x,y)=y' egyenlet olyan, hogy az f egy (x<sub>0</sub>,y<sub>0</sub>) pont környezetében folytonos, akkor van az y(x<sub>0</sub>)=y<sub>0</sub> kezdeti feltételnek eleget tévő partikuláris megoldása.
 
'''Tétel''' -- Peano-féle egzisztenciatétel -- Ha az f(x,y)=y' egyenlet olyan, hogy az f egy (x<sub>0</sub>,y<sub>0</sub>) pont környezetében folytonos, akkor van az y(x<sub>0</sub>)=y<sub>0</sub> kezdeti feltételnek eleget tévő partikuláris megoldása.
  
 
Megmutatjuk, hogy a folytonossági kitétel szükséges. Tekintsük a sgn(y)=y' egyenletet. Nyilván ennek nincs megoldása a (bármi,0)-ban, mert ott a sgn ugrik, márpedig differenciálható függvény deriváltjának nem lehet ugrása.
 
Megmutatjuk, hogy a folytonossági kitétel szükséges. Tekintsük a sgn(y)=y' egyenletet. Nyilván ennek nincs megoldása a (bármi,0)-ban, mert ott a sgn ugrik, márpedig differenciálható függvény deriváltjának nem lehet ugrása.
  
'''Tétel''' -- Egzisztencia-unicitás tétel, gyenge verzió -- Ha a nyílt halmazon értelmezett f(x,y) mindkét változója szerint folytonosan parciálisan differenciálható, akkor minden az értelmezési tartományban lévő I&times;J kompakt téglalapon egyértelműen létezik az y'=f(x,y)-nak a téglalap belsejéhez tartozó kezdeti feltételnek eleget tévő I-n értelmezett megoldása.
+
'''Tétel''' -- Egzisztencia-unicitás tétel, gyenge verzió, lokális alak -- Ha az U nyílt halmazon értelmezett f(x,y) folytonosan parciálisan differenciálható, akkor minden U-beli kezdeti feltételhez egyértelműen létezik az y'=f(x,y)-nak a kezdeti feltételtnek megfelelő megoldása.
  
''Cauchy--Lipschitz-tétel.'' A tétel akkor is igaz, ha f-re nem a folytonos deriválhatóságot, hanem csak a folytonosságot és az egységes Lipschitz-feltételt tesszük fel, azaz, hogy létezik olyan L szám, hogy minden (x,y<sub>1</sub>),(x,y<sub>2</sub>)&isin;I&times;J-re
+
''Cauchy--Lipschitz-feltétel, erős verzió, globális alak.'' A tétel akkor is igaz, ha f-re nem a folytonos deriválhatóságot, hanem csak a folytonosságot és az egységes Lipschitz-feltételt tesszük fel, azaz, hogy létezik olyan L szám, hogy minden (x,y<sub>1</sub>),(x,y<sub>2</sub>)&isin;U-ra
 
:<math>|f(x,y_1)-f(x,y_2)|\leq L|y_1-y_2|.</math>  
 
:<math>|f(x,y_1)-f(x,y_2)|\leq L|y_1-y_2|.</math>  
 +
 +
Ilyenkor globális állítás is megfogalmazható: minden U-beli kompakt K halmazhoz és az ennek belsejében lévő kezdeti ponthoz létezik egyetlen megoldása az y'=f(x,y) differenciálegyenletnek, mely áthalad a ponton és a megoldás grafikonja a K halmazból kilép.
  
 
===Feladatok===
 
===Feladatok===
'''1.'''
 
 
a) Mi az általános megoldása?
 
a) Mi az általános megoldása?
 
: <math>y'=\frac{x\sin(1+x^2)}{y^4}</math>
 
: <math>y'=\frac{x\sin(1+x^2)}{y^4}</math>
108. sor: 114. sor:
 
:<math>y=0\,</math> és <math> y=(2/3)x^{3/2}\,</math>
 
:<math>y=0\,</math> és <math> y=(2/3)x^{3/2}\,</math>
  
'''2.''' Oldjuk meg az
+
<center>
:<math>y'=x^2\frac{\cos^4 y}{\sin y}</math>
+
egyenletet az
+
:a) <math>y(0)=-\frac{\pi}{2}</math>
+
:b) <math>y(0)=\frac{\pi}{4}</math>
+
:c) <math>y(0)=\frac{\pi}{4}+2\pi</math>
+
kezdeti feltételek mellett!
+
 
+
''Mo.'' a) Ehhez egy konstans megoldás tartpzik és nincs másik a (0,-&pi;/2)-n áthaladó, mert az y szerinti parciális derivált korlátos.
+
 
+
b) Az általános megoldásból keressük a kezdeti feltételt kielégítő megoldást:
+
:<math>\frac{\sin y}{\cos^4 y}y'=x^2</math>
+
:<math>-\cos^{-4} y(-\sin y)\,y'=x^2</math>
+
:<math>\frac{1}{3}\cos^{-3} y=\frac{1}{3}x^3+C</math>
+
Az implicit egyenlet:
+
:<math>\cos^{-3} y=x^3+3C</math>
+
Ha x=0 és y=&pi;/4, akkor
+
:<math>3C=\frac{1}{(\frac{\sqrt{2}}{2})^3}</math>
+
és
+
:<math>y(x)=\mathrm{arccos}\frac{1}{\sqrt[3]{x^3+\frac{24}{(\sqrt{2})^3}}}</math>
+
c) ugyanez + 2&pi;
+
 
+
'''HF.''' Oldjuk meg az y' = sin(x) yln(y) egyenletet az
+
:a) y(0)=1,
+
:b) y(0)=e
+
kezdeti feltételek mellett!
+
 
+
=== Függvényegyenletek===
+
 
+
'''4. Feladat.''' Van-e nemdifferenciálható, de folytonos megoldása az <math>y^2=x^2\,</math> függvényegyenletnek?
+
 
+
'''5. Feladat.''' Hány megoldása van az |f(x)|=e<sup>x</sup> '''R'''-en? Hány diffható ebből?
+
 
+
==Homogén fokszámú egyenletek==
+
 
+
Az F(x,y) ''n''-homogén függvény, ha minden &lambda; esetén
+
:<math>F(\lambda x,\lambda y)=\lambda^n F(x,y).</math>
+
Az y'=F(x,y) egyenlet homogén, ha F(x,y) 0-homogén.
+
 
+
Homogén egyenleteknél az y=ux helyettesítés vezet célra. Akkor
+
:y'=u'x+u
+
 
+
'''Feladat.''' (2x+y)dx + (y+x)dy =0
+
Homogén, mert
+
:<math>y'=-\frac{2x+y}{x+y}</math>
+
jobb oldala 0-homogén:
+
:<math>-\frac{2x+y}{x+y}=-\frac{2\lambda x+\lambda y}{\lambda x+\lambda y}=-\frac{2x+y}{x+y}</math>
+
:<math>u'x+u=-\frac{2+u}{1+u}</math>
+
:<math>u'x=-\frac{2+2u+u^2}{1+u}</math>
+
:<math>\frac{1+u}{2+2u+u^2}u'=-\frac{1}{x}</math>
+
 
+
 
+
 
+
 
+
 
+
[[Kategória:Matematika A3]]
+
 
+
==Komplex számkör és reprezentációi==
+
A komplex számok '''C''' halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.
+
 
+
===Algebrai modell===
+
A komplex számok olyan
+
:<math>a+b\mathrm{i}\,</math>
+
alakú formális kifejezések, ahol ''a'' és ''b'' valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy
+
:<math>\mathrm{i}^2=-1\,</math>
+
A komplex számok halmazát a '''C''' szimbólummal jelöljük, tehát
+
:<math>z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})</math>
+
itt ''a''-t a ''z'' valós részének nevezzük és Re(''z'')-vel jelöljük, ''b''-t a ''z'' képzetes részének nevezzük és Im(''z'')-vel jelöljük. Világos, hogy Im(''z'') &isin; '''R''', azaz "tiszta" valós.
+
 
+
'''Megjegyzés.''' A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok '''R'''[X] halmazából. Közismert, hogy a valósegyütthatós,  egyhatározatlanú polinomokal, azaz a
+
:<math>a_0+a_1x+a_2x^2+...+a_nx^n\,</math>
+
alakú kifejezésekkel, ahol az ''a<sub>i</sub>''-k valós számok, ''n'' pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor
+
:<math>\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)</math>
+
azaz a komplex számok halmaza a valósegyütthatós polinomok x<sup>2</sup>+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll
+
:<math>m(x)=a+bx\,</math>
+
alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az ''összeadás'' a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x<sup>2</sup>+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a 
+
:<math>m(x)^2+1=0\,</math>
+
polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor
+
:<math>m(x)^2=-1\,</math>
+
azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az ''m(x)=x'' polinom az, mely az ''i'' egység szerepét játssza és így is jelöljük ezt ezentúl.
+
 
+
 
+
Akárcsak a legfeljebb elsőfokú ''a'' + ''bx'' alakú polinomok esetén, a '''C'''-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az ''a'' + ''bx'' alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i<sup>2</sup>=-1 egyenlőség miatt visszaérkeznek az ''a'' + ''b''i alakú kifejezések körébe. Ezért lesz '''C''' zárt arra a szorzásra, amit a polinomok mintájára definiálunk.
+
 
+
Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:
+
 
+
'''Állítás.''' A '''C''' számkör a komplex számok
+
:(''a''+''b''i) + (''c''+''d''i) = (''a''+''c'') + (''b''+''d'')i összeadásával és a
+
:&lambda;(''a''+''b''i) = &lambda;''a'' + &lambda;''b''i, a &lambda; valós számmal való szorzással
+
kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok '''R'''<sup>2</sup> vektorterével.
+
 
+
===Halmazelméleti modell===
+
Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az ''a'' + ''b''i alakú formális kifejezéseken az '''R'''[X] polinomgyűrűnek az (1+X<sup>2</sup>) polinommal történő maradékos osztásának maradékait értjük).
+
 
+
A számpár reprezentációban:
+
:<math>\mathbf{C}=\mathbf{R}^{2}\,</math>
+
az összeadás az '''R'''<sup>2</sup>-beli vektorösszeadás, a szorzás, pedig a
+
:<math>(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,</math>
+
művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.
+
 
+
Ez az interpretáció azért fontos, mert explicitté teszi, hogy a '''C''' örökli az '''R'''<sup>2</sup> topológiáját.
+
 
+
===Geometriai modell===
+
 
+
A szorzással együtt '''C''' egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2&times;2-es valós mátrixon M<sub>2&times;2</sub> ('''R''') algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az '''R'''<sup>2</sup> síkon:
+
:<math>\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
+
\begin{pmatrix}
+
r\cos\varphi  & -r\sin\varphi\\
+
r\sin\varphi  & r\cos\varphi
+
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})</math>
+
Világos, hogy ekkor az ''a'' + ''b''i kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:
+
:<math>\left\{\begin{pmatrix}
+
a  & -b\\
+
b  & \;\;a
+
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}</math>
+
Ez a mátrixhalmaz kétdimenziós altér az  M<sub>2&times;2</sub> ('''R''') algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.
+
 
+
=='''C''' topológiája==
+
 
+
'''R'''<sup>2</sup> gömbi környezetei lesznek '''C''' gömbi környezetei. Általában, minden topologikus fogalom '''C'''-ben '''R'''<sup>2</sup>-re vezetünk vissza. Tehát, adott ''r'' > 0 valós számra és ''z''<sub>0</sub> &isin; '''C''' számra:
+
:<math>\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}</math>
+
az ''r'' sugarú ''z''<sub>0</sub> középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||<sub>2</sub> euklideszi norma, elvileg '''R'''<sup>2</sup> bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. &Omega; &sube; '''C''' '''nyílt''', ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:
+
:<math>\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega</math>
+
Egy ''A'' &sube; '''C''' halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van ''A''-ban
+
:<math>\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}</math>
+
Mivel '''R'''<sup>2</sup>-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és '''R'''<sup>2</sup>-'''R'''<sup>2</sup> függvények között a következő azonosítással élhetünk. Ha ''f'': '''C'''&supe; <math>\rightarrow</math>'''C''' függvény, akkor ''z'' = ''x'' + i''y'', ''f''(''z'')=''u''(''x'',''y'')+i''v''(''x'',''y''), ill.
+
:<math>f\equiv\begin{pmatrix}u\\v\end{pmatrix}
+
</math>
+
 
+
===Folytonosság===
+
 
+
Azt mondjuk, hogy az ''A'' &sube; '''C''' halmazon értelmezett ''f'' függvény folytonos a ''z'' &isin; '''A''' pontban, ha ''z''-ben ''f'' folytonos mint '''R'''<sup>2</sup> &supe; ''A'' <math>\to</math> '''R'''<sup>2</sup> függvény. Maga az ''f'' ''folytonos'', ha az értelmezési tartománya minden pontjában folytonos.
+
 
+
A többváltozós valós analízisből ismert tény miatt fennáll:
+
 
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha ''f''-et a következő alakban írjuk:
+
:<math>f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)</math> 
+
ahol ''u'' és ''v'' valós értékű függvények (rendre Re(''f'') és Im(''f'')), továbbá ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub> &isin; Dom(''f''), akkor a következők ekvivalensek:
+
# ''f'' folytonos a ''z''<sub>0</sub>-ban
+
# ''u'' és ''v'' függvények folytonosak az (''x''<sub>0</sub>,''y''<sub>0</sub>)-ban 
+
 
+
 
+
A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a <math>z=x+iy</math> pontban a lim<sub>x</sub> u + i lim<sub>y</sub> v szám adja. Ekkor
+
 
+
 
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.
+
: <math>\lim\limits_{z\to z_0} f(z)=f(z_0)</math>
+
A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció '''R'''<sup>2</sup>-ben lineáris legyen, hiszen ''a véges dimenziós normált terek között ható lineáris leképezések folytonosak.'' A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.
+
 
+
 
+
'''Feladat.''' Legyen ''w'' &isin; '''C'''. Igazoljuk, hogy az alábbi függvények folytonosak!
+
# <math>z\mapsto w + z\,</math>
+
# <math>z\mapsto w\cdot z\,</math>
+
# <math>z\mapsto \overline{z}\,</math> 
+
# <math>z\mapsto \frac{1}{z}\quad\quad (z\ne 0)</math> 
+
 
+
''Megoldás.''
+
 
+
Az 1. az '''R'''<sup>2</sup>-ben eltolás a ''w''-nek megfelelő vektorral (Re(''w''), Im(''w''))-vel, így affin leképezés, ami folytonos.
+
 
+
2. a ''w'' mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.
+
 
+
3. azaz a konjugálás: (''x'',''y'') <math>\mapsto</math> (''x'',–''y'') a valós tengelyre való tükrözés, ami szintén lineáris.
+
 
+
Végül a reciprok:
+
:<math>\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}</math>
+
így, mint '''R'''<sup>2</sup> &sup;<math>\to</math> '''R'''<sup>2</sup> függvény:
+
:<math>\begin{pmatrix}
+
x \\
+
y
+
\end{pmatrix}\mapsto
+
\begin{pmatrix}
+
\cfrac{x}{x^2+y^2} \\
+
\cfrac{-y}{x^2+y^2}
+
\end{pmatrix}</math>
+
amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.
+
 
+
'''Feladat.''' Folytonos-e a ''z'' = 0-ban az
+
:<math>f(z)=\left\{
+
\begin{matrix}
+
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
+
\\
+
0,\quad\quad \mathrm{ha}\;z=0
+
\end{matrix}
+
\right.</math>
+
 
+
''Megoldás.''
+
+
Ha ''z'' = ''x'' + i''y'' és (''x'',''y'') &ne; (0,0), akkor:
+
:<math>f(x,y)=\begin{pmatrix}
+
\cfrac{y^3}{x^2+y^2} \\
+
\cfrac{x^4}{x^2+y^2}
+
\end{pmatrix}</math>
+
 
+
A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:
+
:<math>\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|</math>
+
és
+
:<math>\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2</math>
+
így (x,y)<math>\to</math>(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért ''f'' a 0-ban folytonos.
+
 
+
 
+
Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő '''R'''<sup>2</sup>-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.
+
 
+
'''Állítás.''' Ha ''f'' és ''g'' komplex függvények és az ''z''<sub>0</sub>  pontban (mindketten értelmezettek és) folytonosak, akkor
+
# ''f'' + ''g''
+
# ''f'' <math>\cdot</math> ''g''
+
# <math>\overline{f}</math>
+
# ''g''(''z''<sub>0</sub>) &ne; 0 esetén ''f''/''g''
+
is folytonos ''z''<sub>0</sub>-ban. 
+
 
+
 
+
Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).
+
 
+
==Komplex számkör unicitása==
+
'''C''', azaz a komplex számok teste kétdimenziós valós vektortér. '''C''' elemei  reprezentálhatók az '''R'''<sup>2</sup> síkon, a következő megfeleltetésekkel:
+
:<math>\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2</math>
+
a vektortérműveletek pedig:
+
:<math>\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2</math> vektorösszeadás (''a'', ''b'', ''c'', ''d'' &isin; '''R''')
+
:<math>\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2</math> valós számmal való szorzás (&lambda;, ''a'', ''b'' &isin; '''R''')
+
 
+
A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. '''C''' nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt '''C''' ''az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra'' -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).
+
 
+
A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa
+
:<math>\begin{pmatrix}
+
a & -b\\
+
b & a
+
\end{pmatrix}</math>
+
A komplex számok szorzása itt a mátrixszorzás.
+
 
+
 
+
 
+
  
 +
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/2. gyakorlat |2. gyakorlat]]
 +
|}
 +
</center>
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]

A lap 2013. szeptember 27., 17:23-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Differenciálegyenletek

Legyen F:I×J\toR korlátos és zárt téglalapon értelmezett folytonos kétváltozós függvény. Az

y ' = F(x,y)

elsőrendű közönséges differenciálegyenlet megoldásainak nevezzük az olyan y:K\toJ függvényeket, melyekre

1) KI intervallum,
2) y differenciálható függvény és
3) minden xK számra y'(x)=F(x,y(x)).

Ha (x0,y0)∈I×J, akkor az egyenlet y0 = y(x0) kezdeti feltételt kielégítő partikuláris megoldásának nevezzük az olyan megoldásokat, melyekre y0 = y(x0). Adott kezdeti feltételt kielégítő megoldás keresését kezdeti érték problémának vagy Cauchy-problémának nevezzük. Az egyenlet összes megoldása az egyenlet összes megoldása.

Integrálgörbe, görbesereg, általános megoldás

Az elsőrendű közönséges differenciálegyenlet megoldásának keresése geometriailag a következőket jelenti. Adott koordinátasíkon egy téglalap, melynek minden pontjához az F függvény egy számot (tkp. meredekséget) rendel. Ez az iránymező. Keresünk olyan függvénygörbéket, melyek deriváltja (érintőjének meredeksége) az adott pont abszciszájában éppen az F függvény azon pontbeli értéke. Az ilyen függvénygörbékhez tartozó egyváltozós függvények az egyenlet megoldásai, magukat a görbéket pedig az egyenlet integrálgörbéinek hívjuk.

1. Számpélda.

(diff) y'=-\frac{x}{y}\,

Bármi is legyen a megoldás, az nem vehet fel 0 értéket, mert az ismeretlen függvény a nevezőben szerepel. Látható, hogy az (x,y) vektor +90 fokos elforgatottja az F(x,y) értéke. Ebbe az iránymezőbe belesimul a kör:

(impl) x^2+y^2=r^2\,

Az ilyen egyenlet által leírt függvénygörbe valóban a (diff) megoldását ábrázolja (feltéve, hogy y differenciálható és nem veszi föl a nullát).

Most megmutatjuk, hogy az (impl) differenciálható implicit függvényei megoldásai (diff)-nek. A differenciálható implicit függvénye (impl)-nek olyan intervallumon értelmezett y=y(x) diff.-ható függvény, melyre minden x∈Dom(y)-ra:

x^2+(y(x))^2=r^2\,

valamely r-re. Ha tehát van (impl)-nek y(x) megoldása, akkor az implicit deriválás szabályai szerint:

2x+2y(x)y'(x)=0\,

tehát y valóban (diff) megolása. A körívek tehát integrálgörbéi az egyenletnek. Az integrálgörbék ráadásul paraméteres görbesereggé állnak össze, melyekben a paraméter a kör sugara.

(diff) megoldásai azonban ugyanígy megoldásai (impl)-nak. Az a szerencsénk, hogy megsejtettük, hogy (impl) az egyenlet integrálja, ezért ezt már nem kell előállítanunk. Legyen y olyan, hogy 2x+2y(x)y'(x)≡0 és y0=y(x0). Az implicit deriválás miatt tudjuk, hogy

g:x\mapsto x^2+(y(x))^2\,

deriváltja, azaz 2x+2y(x)y'(x), azonosan nulla. Az integrálszámítás alaptétele szerint tehát g (az I minden korlátos és zárt L intervallumán) konstans függvény:

x^2+(y(x))^2=C\,

r2=C-t pedig kijelöli y0=y(x0).

[Az integálszámítás alaptétele abban a gyenge formában, ahogy mi most használtuk ez: ha a nyílt intervallumon értelmezett folytonosan differenciálható g:I\toR függvény deriváltja azonosan nulla, akkor ez a függvény minden zárt és korlátos intervallumon konstans. Ez közvetlen következménye a Lagrange-féle középértéktételnek. Az erősebbb alak szerint g-ről elég feltenni, hogy Lipschitz-függvény és a deriáltja majdnem mindenhol nulla.]

Általánosított fogalmak. Azt mondjuk, hogy a differenciálegyenlet általános megoldását (a HI×J kezdeti feltétel halmazon) a Φ(x,y,C)=0 egyenletű egyparaméteres görbesereg szolgáltatja (vagy az egyenlet általános megoldását az előbbi implicit egyenlet adja meg), ha minden (H-beli) (x0,y0) kezdeti feltételre van egyetlen olyan C valós paraméter, hogy rögzített C-re a Φ(x,y,C)=0 egyenlet (x0,y0) ponthoz tartozó implicit megoldása a differenciálegyenlet kezdeti feltételt kielégítő megoldása.

Az egyenlet explicit általános megoldása (a HI×J halmazon ) a Ψ:K×R\toJ paraméteres függvény, ha minden (H-beli) kezdeti feltételhez egyértelműen létezik olyan C, melyre y=Ψ(.,C) a szóban forgó kezdeti feltételt kielégítő megoldása az egyenletnek.

Tegyük föl, hogy a Φ(x,y,C)=0 implicit egyenlettel megadott görbesereg elemei megoldásai egy differenciálegyenletnek. Ha Φ minden változója szerint (tehát a paraméter szerint is) folytonosan parciálisan differenciálható, akkor annak az elégséges feltétele, hogy C egyértelműen kifejezhető legyen az, hogy Φ C-szerinti deriváltja sehol se legyen nulla. Ezt a feltételt az implicitfüggvény tétele biztosítja.

Szeparábilis differenciálegyenlet

A legegyszerűbb differenciálegyenlet az y'=f(x), ami lényegében primitívfüggvénykeresés. Tudjuk, hogy (folytonos f esetén) mindig van ennek megoldása, éspedig az integrálfüggvény az, de ez nem feltétlenül kapható meg elemi függvények segítségével "kézzel fogható" zárt alakban. Az előző számpélda arról árulkodott, hogy a diffegyenlet megoldásához kell egy egyenlet, melynek implicit megoldásai az differenciálegyenlet megoldásai lesznek. Ezt az implicit egyenletet konstruktív módon nem mindig lehet megtalálni. (Az explicitet meg pláne nem.)

Általánosabb esetben a közönséges elsőrendű differenciálegyenletek megoldását két startégiával kereshetjük meg. Az egzakt differenciálegyenlet és a szeparálás. Most a szeparábilis egyenletek megoldását nézzük meg.

2. Feladat. Milyen függvények elégítik ki az alábbi differenciálegyenletet?

y'=\frac{\sin x}{y^6}\,

Megoldás. Nyilván a megoldás sehol sem vehet föl nulla értéket, mert akkor

\frac{\sin x}{y^6(x)}\,

ott nem lenne értelmezve.

A mechanikus megoldási eljárás annak az egyenletnek a legyártásához, melynek implicit megoldásai a szeparábilis egyenlet megoldásai lesznek a következő. Ha van megoldás, akkor nyilván

\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\sin x}{y^6}\,
y^6\mathrm{d}y=\sin(x)\,\mathrm{d}x\,
\int y^6\mathrm{d}y=\int \sin(x)\,\mathrm{d}x\,
\frac{y^7}{7}=-\cos(x)+C\,

ez az implicit általános megoldás és

y(x)=\sqrt[7]{-7\cos(x)+C}\,

az explicit általános megoldás. Olyan K\toR differenciálható függvények a megoldások, melyek hozzárendelési utasítása a fenti és nem veszik fel a nulla értéket. A megoldás mechanikus megkeresése után tehát olyan KR intervallumokra kell szorítkoznunk, ahol az y(x) nem vesz fel nulla értéket és a 7. gyök alatt nincs nulla (ahol az nem lenne differenciálható).

Egzisztencia és unicitás

Tétel. Legyen f : I \to R, g: J \to R intervallumon értelmezett folytonos függvények, ahol g sehol sem nulla. Az

y'=f(x)g(y)\,

szeparábilis diffegyenlet összes megoldása

y(x)=G^{-1}(F(x)+C)\,

alakú, ahol G az 1/g egy integrálfüggvénye, F az f-é.

Bizonyítás. Tegyük fel, hogy van megoldás és ennek értelmezési tartománya a KI halmaz. Ekkor

y'(x)=f(x)g(y(x)),\,

A helyettesítéses integrálás szabálya szerint

\int\frac{y'}{g(y)}\,dy=G(y)=\int f(x)\,dx=F(x)+C

azaz

G\circ y= F+C\,

ahol G az 1/g egy integrálfüggvénye, F az f-é. Mivel G deriváltja g és a derivált nem ugrik (Darboux-tétel), ezért G szigorúan monoton, tehát G injektív, azaz az y kifejezhető:

y(x)=G^{-1}(F(x)+C)\,

Az implicitfüggvény-tételből az is kiderül, hogy az Φ(x,y)=G(y)-F(x)-C függvény folytonosan differenciálható és y szerinti deriváltja nem nulla, így lokálisan létezik implicit függvénye bármely pontban és deriváltja:

y'(x)=-\frac{(\partial_x\Phi)(x,y(x))}{(\partial_y \Phi)(x,y(x))}=-\frac{-f(x)}{1/g(y(x))},\,

3. Feladat. Oldjuk meg az y'=ay\, egyenletet.

Mo.y≡0 megoldás. Ha semmilyen pontban y nem nulla, akkor ln |y|= ax +C, |y|=Keax, ennek differenciálható implicit függvényei (a Bolzano-tétel miatt): y=ceax ahol c nemnulla valós szám; ha c=0 is megengedett, akkor az y=0 is beilleszthető a paraméteres megoldások közé. Valójában a feladat becsapás, mert ez nem szeparábilis egyenlet. Szeparálással megkaphatók megoldások, és mivel lineáris, ezért a megoldásai egydimenziós lineáris teret alkotnak, azaz egy nemnulla megoldásból az összes megoldás egy konstans szorzóval megkapható, tehát y=ceax az összes megoldás. Továbbá az alábbi C--L-feltétel miatt a 0 értékű megoldás is egyértelmű, azaz ha valahol 0 a megoldás, akkor az csak az azonosan nulla lehet.

4. Feladat. (1+x^3)dx - x^2ydy=0\, Minden olyan intervallumon, melynek a 0 nem eleme szeparálva:

y\,dy=\frac{1+x^3}{x^2}\,dx
\frac{1}{2}y^2=-\frac{1}{x}+\frac{1}{2}x^2+C

Peano- és Cauchy--Lipschitz-feltétel

Tétel -- Peano-féle egzisztenciatétel -- Ha az f(x,y)=y' egyenlet olyan, hogy az f egy (x0,y0) pont környezetében folytonos, akkor van az y(x0)=y0 kezdeti feltételnek eleget tévő partikuláris megoldása.

Megmutatjuk, hogy a folytonossági kitétel szükséges. Tekintsük a sgn(y)=y' egyenletet. Nyilván ennek nincs megoldása a (bármi,0)-ban, mert ott a sgn ugrik, márpedig differenciálható függvény deriváltjának nem lehet ugrása.

Tétel -- Egzisztencia-unicitás tétel, gyenge verzió, lokális alak -- Ha az U nyílt halmazon értelmezett f(x,y) folytonosan parciálisan differenciálható, akkor minden U-beli kezdeti feltételhez egyértelműen létezik az y'=f(x,y)-nak a kezdeti feltételtnek megfelelő megoldása.

Cauchy--Lipschitz-feltétel, erős verzió, globális alak. A tétel akkor is igaz, ha f-re nem a folytonos deriválhatóságot, hanem csak a folytonosságot és az egységes Lipschitz-feltételt tesszük fel, azaz, hogy létezik olyan L szám, hogy minden (x,y1),(x,y2)∈U-ra

|f(x,y_1)-f(x,y_2)|\leq L|y_1-y_2|.

Ilyenkor globális állítás is megfogalmazható: minden U-beli kompakt K halmazhoz és az ennek belsejében lévő kezdeti ponthoz létezik egyetlen megoldása az y'=f(x,y) differenciálegyenletnek, mely áthalad a ponton és a megoldás grafikonja a K halmazból kilép.

Feladatok

a) Mi az általános megoldása?

y'=\frac{x\sin(1+x^2)}{y^4}

b) Hány megoldása van az alábbi KÉF-nak? Ha több van, mondjunk legalább kettőt!

y'=\sqrt[3]{y}, y(0)=0\,

Mo. a) Minden olyan kezdeti feltételhez, melyben y nem nulla van egyértelmű megoldás, éspedig

y^4dy=x\sin(1+x^2)dx\,
\frac{y^5}{5}=-\frac{1}{2}\cos(1+x^2)+C
y(x)=\sqrt[5]{-\frac{5}{2}\cos(1+x^2)+5C}

b)

y=0\, és  y=(2/3)x^{3/2}\,
2. gyakorlat
Személyes eszközök