Matematika A3a 2008/2. gyakorlat

A MathWikiből
(Változatok közti eltérés)
a
a (Egzisztencia- és unicitástétel)
93. sor: 93. sor:
 
1) az  
 
1) az  
 
:(ex) y'=-P/Q  
 
:(ex) y'=-P/Q  
egyenletnek egyértelműen létezik az <math>y_0=y(x_0)</math> kezdeti feltételt kielégítő ''y'' megoldása és  
+
egyenletnek létezik az <math>y_0=y(x_0)</math> kezdeti feltételt kielégítő ''y'' megoldása és  
  
 
2) az  
 
2) az  
115. sor: 115. sor:
  
 
2) Az implicitfüggvény tételében adott egyetlen implicit függvény az 1) egzisztencia része miatt megoldása (ex)-nek és 1) unicitás része miatt ez az egyetlen megoldása (ex)-nek.
 
2) Az implicitfüggvény tételében adott egyetlen implicit függvény az 1) egzisztencia része miatt megoldása (ex)-nek és 1) unicitás része miatt ez az egyetlen megoldása (ex)-nek.
 
  
 
==Az egzaktság jellemzése==
 
==Az egzaktság jellemzése==

A lap 2013. szeptember 19., 09:55-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Gyakorlatok kezdeti érték feladatra

1. Oldjuk meg az

y'=x^2\frac{\cos^4 y}{\sin y}

egyenletet az

a) y(0)=-\frac{\pi}{2}
b) y(0)=\frac{\pi}{4}
c) y(0)=\frac{\pi}{4}+2\pi

kezdeti feltételek mellett!

Mo. a) Ehhez egy konstans megoldás tartpzik és nincs másik a (0,-π/2)-n áthaladó, mert az y szerinti parciális derivált korlátos.

b) Az általános megoldásból keressük a kezdeti feltételt kielégítő megoldást:

\frac{\sin y}{\cos^4 y}y'=x^2
-\cos^{-4} y(-\sin y)\,y'=x^2
\frac{1}{3}\cos^{-3} y=\frac{1}{3}x^3+C

Az implicit egyenlet:

cos − 3y = x3 + 3C

Ha x=0 és y=π/4, akkor

3C=\frac{1}{(\frac{\sqrt{2}}{2})^3}

és

y(x)=\mathrm{arccos}\frac{1}{\sqrt[3]{x^3+\frac{24}{(\sqrt{2})^3}}}

c) ugyanez + 2π

HF. Oldjuk meg az y' = sin(x) yln(y) egyenletet az

a) y(0)=1,
b) y(0)=e

kezdeti feltételek mellett!

Függvényegyenletek

2. feladat. Van-e nemdifferenciálható, de folytonos megoldása az y^2=x^2\, függvényegyenletnek? Mo. Igen: y(x)=|x| nemdifferenciálható, de folytonos megoldása.

3. Feladat. Hány megoldása van az |f(x)|=ex R-en? Hány diffható ebből? Mo. Végtelen sok megoldása van, pl.: minden n természetes számhoz található mo., melyek egymáshoz páronként különbözők: f(x)=ex, ha x nem az n természetes szám és -ex, ha x az n természetes szám. Ebből kettő diffható akad: ex, -ex, ami a Bolzano-tételből következik. Ha ugyanis lenne nem csak poz. és nem csak neg. mo., akkor a 0-t is felvenné, ami lehetetlen, mert az exp. függvénynek nincs nulla értéke.

Homogén fokszámú egyenletek

Az F(x,y) n-homogén függvény, ha minden λ esetén

Fxy) = λnF(x,y).

Az y'=F(x,y) egyenlet homogén, ha F(x,y) 0-homogén.

Homogén egyenleteknél az y=ux helyettesítés vezet célra. Akkor

y'=u'x+u

Feladat. (2x+y)dx + (y+x)dy =0 Homogén, mert

y'=-\frac{2x+y}{x+y}

jobb oldala 0-homogén:

-\frac{2x+y}{x+y}=-\frac{2\lambda x+\lambda y}{\lambda x+\lambda y}=-\frac{2x+y}{x+y}
u'x+u=-\frac{2+u}{1+u}
u'x=-\frac{2+2u+u^2}{1+u}
\frac{1+u}{2+2u+u^2}u'=-\frac{1}{x}

Egzakt differenciálegyenlet

Definíció

Legyen U ⊆ R2 nyílt halmaz és P,Q: U \to R folytonos függvények, Q sehol sem nulla. Azt mondjuk, hogy az

y'=-\frac{P(x,y)}{Q(x,y)}\quad\quad \mathrm{(EX)}

differenciálegyenlet egzakt, ha létezik olyan F: U \to R folytonosan differenciálható függvény, hogy

\frac{\partial F}{\partial x}=P,\quad\quad\frac{\partial F}{\partial y}=Q\quad\quad\mathrm{(C)}

Számpélda. Az

y'=-\frac{x}{y}

egyenlet egzakt, mert az F(x,y)=x2+y2 függvény olyan, hogy &partial;xF(x,y)=2x, &partial;yF(x,y)=2y, mármint az

y'=-\frac{2x}{2y}

alakjában egzakt.

Elméleti példa. Minden

y'=\frac{f(x)}{g(y)}\quad\quad (f\in\mathrm{C}(I),\;g\in \mathrm{C}(J),\;0\notin\mathrm{Ran}(g))

alakú szeparábilis differenciálegyenlet egzakt, hiszen ha g integrálfüggvénye G, akkor

g(y)y'=f(x)\quad\quad\Rightarrow\quad\quad G(y)=F(x)+C

Alkalmas tehát az alábbi függvény:

\Phi(x,y):=G(y)-F(x)=C\quad\quad\Rightarrow\quad\quad\frac{\partial \Phi}{\partial x}=f,\quad\quad\frac{\partial \Phi}{\partial y}=g

Jelen esetben a G függvény deriváltja (G'=g) sehol sem nulla folytonos függvény, ezért szigorúan monoton. Emiatt kifejezhető y éspedig:

y(x)=G^{-1}(F(x)+C)\,

Megjegyzés. A megoldásokat implicit módon adja meg az

\Phi(x,y)=C\,

egyenlet. Mivel

\frac{\partial\Phi}{\partial y}\ne 0

ezért az implicitfüggvény-tétel miatt, hogy y-t "ki lehet fejezni". Érdemes felelevenítenünk magát az implicitfüggvény-tételt:

Implicitfüggvény-tétel -- Ha a Φ: I×J \to R folytonosan differenciálható függvény az (x0,y0) ∈ int(I×J) pontban teljesíti a ∂Φ/∂y ≠ 0 feltételt és Φ(x0,y0)=0, akkor a Φ(x,y)=0 egyenletnek van az (x0,y0) ponton áthaladó implicit függvénye és ennek deriváltja:

y'(x)=-\left.\frac{\;\frac{\partial\Phi}{\partial x}\;}{\frac{\partial \Phi}{\partial{y}}}\right|_{(x,y(x))}

Egzisztencia- és unicitástétel

Tétel. Legyenek P és Q az UR2 nyílt halmazon értelmezett folytonos valós függvények, Q sehol se nulla, grad F = (P,Q) valamely F: U \to R folytonosan differenciálható függvénnyel és (x0,y0)U. Ekkor

1) az

(ex) y'=-P/Q

egyenletnek létezik az y0 = y(x0) kezdeti feltételt kielégítő y megoldása és

2) az

(impl) F(x,y) = F(x0,y0)

egyenlet (x0,y0)-on áthaladó egyetlen implicit függvénye az (ex) egyenlet y(x0) = y0 kezdeti feltételt kielégítő egyetlen megoldása.

Biz. 1) Egzisztencia. Belátjuk, hogy (impl) egyetlen (x0,y0)-on áthaladó implicit függvénye megoldása az (ex) egyenletnek.

\left.\frac{\partial F}{\partial y}\right|_{(x_0,y_0)}=Q(x_0,y_0)\ne 0

így az implicitfüggvény-tétel szerint, egyértelműen létezik F-nek y=y(x) implicit függvénye az adott pont egy környezetében és ennek deriváltja az értelmezési tartományának minden pontjában:

y'(x)=-\frac{\;\cfrac{\partial F}{\partial x}(x,y(x))\;}{\cfrac{\partial F}{\partial y}(x,y(x))}=-\frac{P(x,y(x))}{Q(x,y(x))}

tehát y az (ex) differenciálegyenletnek is megoldása, és ez kielégíti a kezdeti feltételt.

Unicitás. Tegyük fel, hogy létezik megoldása a kezdeti érték feladatnak. Legyen egy tetszőleges megoldása y, azaz

y'(x)=-\frac{P(x,y(x))}{Q(x,y(x))}

Ez az egyenlet a grad F = (P,Q) miatt előáll

\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'=0

alakban. Most belátjuk, hogy y (impl)-nek implicit megoldása. Az összetett függvény differenciálási szabálya miatt ( d(F\circG)(x,y)=dF(G(x,y))\circ dG(x,y) ) az előző egyenlet a következő formában is írható:

(F(x,y(x)))'=[\mathrm{grad}\,F|_{(x,y(x))}]\cdot\begin{bmatrix}x'\\y'(x)\end{bmatrix}=\frac{\partial F}{\partial x}|_{(x,y(x))}+y'\frac{\partial F}{\partial y}|_{(x,y(x))}\equiv 0\,

x értékei egy intervallumból kerülnek ki, ezért az integrálszámítás alaptétele szerint az x \mapsto F(x,y(x)) egy konstans függvény. De a feltétel szerint y(x0) = y0 teljesül, ezért x \mapsto y(x) egy (x0,y0)-on áthaladó implicit függvénye az F(x,y)=F(x0,y0) egyenletnek. Ez az utóbbi azonban egyértelműen van meghatározva, ezért a kezdeti érték feladat minden megoldása egybeesik ezzel az implicit függvénnyel, azaz a megoldás egyértelmű.

2) Az implicitfüggvény tételében adott egyetlen implicit függvény az 1) egzisztencia része miatt megoldása (ex)-nek és 1) unicitás része miatt ez az egyetlen megoldása (ex)-nek.

Az egzaktság jellemzése

Megjegyzés. Az egzakt differenciálegyenletet még

P(x,y)+Q(x,y)y'=0\, ill. P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y=0\,

alakban is szokás írni.

Ez utóbbi egyenletről azt is mondják, hogy akkor egzakt, ha a P(x,y)dx + Q(x,y)dy kifejezés "teljes differenciál", amin azt értik, hogy létezik olyan F(x,y) függvény, melynek teljes differenciálja:

\mathrm{d}F(x,y)=P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y\,

Ezt a mai jelölésekkel a következőképpen írjuk. Egy F kétváltozós függvény teljes differenciálja egy lineáris leképezés, mely a sztenderd {(1,0),(0,1)} bázisban felírt koordinátáival nem más, mit a parciális deriváltjainak sormátrixa:

[\mathrm{d}F(x,y)]=\mathrm{grad}\,F(x,y)=\left[\;\frac{\partial F}{\partial x}\;,\;\frac{\partial F}{\partial y}\;\right]

Emiatt a (C) feltétel a következő alakban is írható:

[\mathrm{d}F]=\left[P,Q\right]\, ill. \mathrm{grad}\,F=[P,Q]\,

Tehát az egzakt egyenletben a (P,Q) vektormező (vektorértékű függvény) potenciálos. Innen hasznos jellemzést kapunk az egzaktságra a vektoranalízisbeli ismereteinkből.


Tétel. Legyen U egyszeresen összefüggő nyílt halmaz, P,Q: U \to R folytonosan differenciálható függvények (Q sehol sem nulla). A Pdx + Qdy = 0 egyenlet pontosan akkor egzakt, ha

\frac{\partial P}{\partial y}\equiv\frac{\partial Q}{\partial x}

Az F függvényt, az Pdx + Qdy = 0 egyenlet integráljának nevezzük.

Ezt a tételt jól ismerjük és a bizonyítását a vektoranalízisben vettük.

Megjegyzés. 1) A feltétel nem más, mint az, hogy a (P,Q) síkbeli vektormező rotációja azonosan nulla. Ugyanis a rotáció a síkbeli (P,Q) vektormező esetén:

\mathrm{rot}\,(P,Q)=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}

2) Bár a szeparábilis egyenlet egzakt, a fenti feltétel az egzaktság ellenőrzésére sokkal szigorúbb mint a szeparábilis egyenlet megoldhatóságának feltétele.

Példák

Oldjuk meg az

(ye^{xy}+\cos x)\,\mathrm{d}x+(xe^{xy}+\mathrm{ch}\, y)\,\mathrm{d}y=0

differenciálegyenletet!

Mo.

\frac{\partial P}{\partial y}(x,y)=e^{xy}+xye^{xy},\quad\quad \frac{\partial Q}{\partial x}(x,y)=e^{xy}+xye^{xy}

Tehát egzakt. Az egyenlet első integrálját megkapjuk, ha megoldjuk az

\frac{\partial F}{\partial x}(x,y)=ye^{xy}+\cos x,\quad\quad \frac{\partial F}{\partial y}(x,y)=xe^{xy}+\mathrm{ch}\, y

parciális differenciálegyenlet-rendszert.

Az első egyenletből:

F(x,y)=e^{xy}+\sin x+C(y)\,

A második egyenlet miatt:

xe^{xy}+C'(y)=xe^{xy}+\mathrm{ch}\, y

azaz

C'(y)=\mathrm{ch}\, y

Innen a C(y)-ra egy partikuláris megoldás:

C(y)=\mathrm{sh}\, y

Azaz

F(x,y)=e^{xy}+\sin x+\mathrm{sh}\, y

Ez valóban teljesíti a grad F = [P,Q] feltételt, így az első integrál:

e^{xy}+\sin x+\mathrm{sh}\, y=C

Feladat. Oldjuk meg az y'=(ycos(xy)+1)/-xcos(xy) az y(1)=0 kezdeti feltétel mellett! Mo. (ycos(xy)+1)dx + xcos(xy)dy=0 Integráljuk mindkét függvényt: F(x,y)=x+ysin(xy)/y+C1(y)=xsin(xy)/x+C2(x). Innen F(x,y)=sin(xy)+x. Ez valóban megoldás és az implicit általános megoldás sin(xy)+x=C. A kezdeti feléttelt kielégítő megoldás: sin(xy)+x=1, ahonnan egy lokális megoldás az x∈(0,2)-beli: sin(xy)=1-x, xy=arc sin(1-x), y(x)=arc sin(1-x)/x


1. gyakorlat
3. gyakorlat
Személyes eszközök