Matematika A3a 2008/3. gyakorlat

A MathWikiből
(Változatok közti eltérés)
74. sor: 74. sor:
  
  
==Komplex sorozatok==
+
==Komplex számkör és reprezentációi==
Minthogy '''C''' &equiv; '''R'''<sup>2</sup> (mint normált vektortér), a komplex sorozatok azon tulajdonságai, melyek a vektortérműveletekkel és az | . | &equiv; || . ||<sub>2</sub> euklideszi normával kapcsolatosak mind '''R'''<sup>2</sup>-ből ismertnek tekinthetők. A sorozatok konvergenciáját ugyanúgy definiáljuk, mint  '''R'''<sup>2</sup>-ben:
+
A komplex számok '''C''' halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.
:<math>
+
\begin{matrix}
+
(z_n)\in\mathbf{C}^{\mathbf{Z}^+}\mbox{ konvergens }\\
+
\\
+
\Updownarrow\mathrm{def}\\
+
\\
+
\exists z\in \mathbf{C}\quad \forall \varepsilon\in\mathbf{R}^+\quad \exists N\in \mathbf{Z}^+\quad \forall n\in\mathbf{Z}^+ \quad(n> N\;\Rightarrow\;|z_n-z|<\varepsilon)
+
\end{matrix}</math>
+
Ekkor a fenti ''z'' egyértelmű, és ez a sorozat határértéke (lim(''z''<sub>n</sub>))
+
  
A legfontosabb jellemzése tehát a konvergenciának az '''R'''<sup>2</sup>-ből kölcsönzött, a komponensekre vonatkozó kritérium:
+
===Algebrai modell===
 +
A komplex számok olyan
 +
:<math>a+b\mathrm{i}\,</math>
 +
alakú formális kifejezések, ahol ''a'' és ''b'' valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy
 +
:<math>\mathrm{i}^2=-1\,</math>  
 +
A komplex számok halmazát a '''C''' szimbólummal jelöljük, tehát
 +
:<math>z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})</math>
 +
itt ''a''-t a ''z'' valós részének nevezzük és Re(''z'')-vel jelöljük, ''b''-t a ''z'' képzetes részének nevezzük és Im(''z'')-vel jelöljük. Világos, hogy Im(''z'') &isin; '''R''', azaz "tiszta" valós.
  
'''Tétel''' A '''C'''-beli (''z''<sub>n</sub>) = (''a''<sub>n</sub> + i''b''<sub>n</sub>) sorozat konvergens akkor és csak akkor, ha
+
'''Megjegyzés.''' A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok '''R'''[X] halmazából. Közismert, hogy a valósegyütthatós,  egyhatározatlanú polinomokal, azaz a
:(''a''<sub>n</sub>) konvergens és
+
:<math>a_0+a_1x+a_2x^2+...+a_nx^n\,</math>
:(''b''<sub>n</sub>) konvergens.
+
alakú kifejezésekkel, ahol az ''a<sub>i</sub>''-k valós számok, ''n'' pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor
 +
:<math>\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)</math>
 +
azaz a komplex számok halmaza a valósegyütthatós polinomok x<sup>2</sup>+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll
 +
:<math>m(x)=a+bx\,</math>
 +
alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az ''összeadás'' a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x<sup>2</sup>+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a 
 +
:<math>m(x)^2+1=0\,</math>
 +
polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor
 +
:<math>m(x)^2=-1\,</math>
 +
azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az ''m(x)=x'' polinom az, mely az ''i'' egység szerepét játssza és így is jelöljük ezt ezentúl.  
  
Ekkor lim(''z''<sub>n</sub>) = lim(''a''<sub>n</sub>) + i<math>\cdot</math>lim(''b''<sub>n</sub>)
 
  
Fontos látni a kapcsolatot a sorozathatárék és a függvényhatárérték között. Egy (''&zeta;''<sub>n</sub>) komplex sorozat nem más, mint egy
+
Akárcsak a legfeljebb elsőfokú ''a'' + ''bx'' alakú polinomok esetén, a '''C'''-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az ''a'' + ''bx'' alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i<sup>2</sup>=-1 egyenlőség miatt visszaérkeznek az ''a'' + ''b''i alakú kifejezések körébe. Ezért lesz '''C''' zárt arra a szorzásra, amit a polinomok mintájára definiálunk.
:<math>\zeta: \mathbf{Z}^+\to \mathbf{C}</math>
+
függvény. Ha '''Z'''<sup></sup>-t komplex részhalmaznak gondoljuk (ahogy az is), akkor az egyetlen torlódási pontja a &infin;. Ezért egy sorozatnak pontosan akkor létezik határértéke és ez a w szám, ha mint függvénynek létezik határértéke és az a w. Azaz:
+
:<math>\exists\lim\limits_{n\to \infty}z_n=w\in\overline{\mathbf{C}}\quad\Longleftrightarrow\quad\exists\lim\limits_{\infty}\zeta=w\in\overline{\mathbf{C}}</math>
+
Ebből következik, hogy a függvényhatárértékre vonatkozó minden műveleti szabály öröklődik a sorozathatárértékre.
+
===Nullsorozatok===
+
  
A 0 komplex számhoz tartó sorozatok nullsorozatok. Az abszolútérték és a szorzás jó tulajdonságai miatt öröklődnek a valós sorozatok alábbi tulajdonságai.
+
Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:
  
'''Állítás''' – Legyen (''z''<sub>n</sub>) komplex számsorozat.
+
'''Állítás.''' A '''C''' számkör a komplex számok
# ''abszolútérték:'' ''z''<sub>n</sub> <math>\to</math> 0 akkor és csak akkor, ha |''z''<sub>n</sub>| <math>\to</math> 0
+
:(''a''+''b''i) + (''c''+''d''i) = (''a''+''c'') + (''b''+''d'')i összeadásával és a
# ''eltolás:'' ''z''<sub>n</sub> <math>\to</math> ''z'' akkor és csak akkor, ha (''z''<sub>n</sub> – ''z'') <math>\to</math> 0
+
:&lambda;(''a''+''b''i) = &lambda;''a'' + &lambda;''b''i, a &lambda; valós számmal való szorzással
# ''"K <math> \cdot</math> 0":'' ha (''w''<sub>n</sub>) korlátos és ''z''<sub>n</sub> <math>\to</math> 0, akkor  (''w''<sub>n</sub> <math>\cdot</math> ''z''<sub>n</sub>) <math>\to</math> 0
+
kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok '''R'''<sup>2</sup> vektorterével.
# ''majoráns:'' ha (&delta;<sub>n</sub>) <math>\to</math> 0 valós és |''z''<sub>n</sub>| < &delta;<sub>n</sub>, akkor ''z''<sub>n</sub> <math>\to</math> 0
+
# ''hányadoskritérium:'' ha <math>\limsup\left|\frac{z_{n+1}}{z_n}\right|<1\,</math>, akkor  ''z''<sub>n</sub> <math>\to</math> 0
+
# ''gyökkritérium:'' ha <math>\limsup\sqrt[n]{|z_n|}<1\,</math>, akkor  ''z''<sub>n</sub> <math>\to</math> 0
+
  
 +
===Halmazelméleti modell===
 +
Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az ''a'' + ''b''i alakú formális kifejezéseken az '''R'''[X] polinomgyűrűnek az (1+X<sup>2</sup>) polinommal történő maradékos osztásának maradékait értjük).
  
Ezek közül '''C'''-ben a legjellegzetesebb a ''"K <math> \cdot</math> 0"'', hiszen ez azt állítja, hogy nem csak a &lambda;<sub>n</sub>.''z''<sub>n</sub> skalárral történő szorzás esetén igaz a "korlátos - nullához" tartó kritérium (mindkét változóban), hanem komplex szorzás is ilyen.
+
A számpár reprezentációban:
 +
:<math>\mathbf{C}=\mathbf{R}^{2}\,</math>
 +
az összeadás az '''R'''<sup>2</sup>-beli vektorösszeadás, a szorzás, pedig a  
 +
:<math>(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,</math>
 +
művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.  
  
 +
Ez az interpretáció azért fontos, mert explicitté teszi, hogy a '''C''' örökli az '''R'''<sup>2</sup> topológiáját.
  
'''1. Feladat'''
+
===Geometriai modell===
:<math>\left(\frac{\sqrt{2}+i}{\sqrt{3n}}\right)^n\to ?</math>
+
  
''(Útmutatás: hivatkozzunk a "korlátos szor nullához tartó" kritériumra.)''
+
A szorzással együtt '''C''' egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2&times;2-es valós mátrixon M<sub>2&times;2</sub> ('''R''') algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az '''R'''<sup>2</sup> síkon:
+
:<math>\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
:<math>\left(\frac{\sqrt{2}+i}{\sqrt{3n}}\right)^n=\left(\frac{\sqrt{2}+i}{\sqrt{3}}\right)^n\frac{1}{\sqrt{n^n}}</math>
+
\begin{pmatrix}
 +
r\cos\varphi  & -r\sin\varphi\\
 +
r\sin\varphi  & r\cos\varphi
 +
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})</math>
 +
Világos, hogy ekkor az ''a'' + ''b''i kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:
 +
:<math>\left\{\begin{pmatrix}
 +
a  & -b\\
 +
b  & \;\;a
 +
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}</math>
 +
Ez a mátrixhalmaz kétdimenziós altér az  M<sub>2&times;2</sub> ('''R''') algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.
  
'''2. Feladat.'''  
+
=='''C''' topológiája==
:<math>\frac{\sqrt[n]{n^3+2n}}{i+1}\to ?</math>
+
ahol az ''n''-edik gyök a valós számból vont valós gyök.
+
  
''(Útmutatás: "i-telenítsük" a nevezőt.)''
+
'''R'''<sup>2</sup> gömbi környezetei lesznek '''C''' gömbi környezetei. Általában, minden topologikus fogalom '''C'''-ben '''R'''<sup>2</sup>-re vezetünk vissza. Tehát, adott ''r'' > 0 valós számra és ''z''<sub>0</sub> &isin; '''C''' számra:
 +
:<math>\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}</math>
 +
az ''r'' sugarú ''z''<sub>0</sub> középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||<sub>2</sub> euklideszi norma, elvileg '''R'''<sup>2</sup> bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. &Omega; &sube; '''C''' '''nyílt''', ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:
 +
:<math>\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega</math>
 +
Egy ''A'' &sube; '''C''' halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van ''A''-ban
 +
:<math>\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}</math>
 +
Mivel '''R'''<sup>2</sup>-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és '''R'''<sup>2</sup>-'''R'''<sup>2</sup> függvények között a következő azonosítással élhetünk. Ha ''f'': '''C'''&supe; <math>\rightarrow</math>'''C''' függvény, akkor ''z'' = ''x'' + i''y'', ''f''(''z'')=''u''(''x'',''y'')+i''v''(''x'',''y''), ill.
 +
:<math>f\equiv\begin{pmatrix}u\\v\end{pmatrix}
 +
</math>
  
:<math>\frac{\sqrt[n]{n^3+2n}}{i+1}=\frac{(i-1)\sqrt[n]{n^3+2n}}{-1-1}=\frac{i\sqrt[n]{n^3+2n}-\sqrt[n]{n^3+2n}}{-2}\to \frac{1}{2}-\frac{1}{2}i</math>
+
===Folytonosság===
ugyanis
+
: <math>1\leftarrow\sqrt[n]{n}^3=\sqrt[n]{n^3}\leq\sqrt[n]{n^3+2n}\leq\sqrt[n]{n^3+\frac{n^3}{2}}=\sqrt[n]{\frac{3}{2}n^3}=\sqrt[n]{\frac{3}{2}}\sqrt[n]{n}^3\to 1</math>
+
  
 +
Azt mondjuk, hogy az ''A'' &sube; '''C''' halmazon értelmezett ''f'' függvény folytonos a ''z'' &isin; '''A''' pontban, ha ''z''-ben ''f'' folytonos mint '''R'''<sup>2</sup> &supe; ''A'' <math>\to</math> '''R'''<sup>2</sup> függvény. Maga az ''f'' ''folytonos'', ha az értelmezési tartománya minden pontjában folytonos.
  
'''3. Feladat.'''
+
A többváltozós valós analízisből ismert tény miatt fennáll:
:<math>\left(\frac{n+i}{n}\right)^n\to ?</math>
+
  
''(Útmutatás: használjunk trigonometrikus alakot és hatványozzunk.)''
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha ''f''-et a következő alakban írjuk:
 +
:<math>f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)</math> 
 +
ahol ''u'' és ''v'' valós értékű függvények (rendre Re(''f'') és Im(''f'')), továbbá ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub> &isin; Dom(''f''), akkor a következők ekvivalensek:
 +
# ''f'' folytonos a ''z''<sub>0</sub>-ban
 +
# ''u'' és ''v'' függvények folytonosak az (''x''<sub>0</sub>,''y''<sub>0</sub>)-ban 
  
:<math>\left(\frac{n+i}{n}\right)^n=\left(\sqrt{1+\frac{1}{n^2}}\right)^n\cdot\left(\cos\left(n\,\mathrm{arc\,tg}\left(\frac{1}{n}\right)\right)+i\sin\left(n\,\mathrm{arc\,tg}\left(\frac{1}{n}\right)\right)\right)\to </math>
 
:: <math>\to \cos1+i\sin 1\,</math>
 
Mert a szögfüggvények argumentumában lévő sorozat az 1-hez tart (pl L'Hospital-szabállyal majd átviteli elvvel ellenőrizhető), a első szorzó pedig az 1-ehez tart (rendőrelvvel). Az argumentumokban lévő értéket tertmészetesen radiánban kell venni: nem 1˚, hanem 1 rad.
 
  
==Komplex sorok==
+
A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a <math>z=x+iy</math> pontban a lim<sub>x</sub> u + i lim<sub>y</sub> v szám adja. Ekkor
  
Minden normált térben definiálhatók sorok és ezek konvergenciája, így '''C'''-ben is. Az (''z''<sub>n</sub>) sorozat
 
: <math>s_n=\sum\limits_{k=1}^n z_k</math>
 
részletösszegeinek (''s''<sub>n</sub>) sorozatát a (''z''<sub>n</sub>) -ből képzett '''sor'''nak nevezzük és &sum;(''z''<sub>n</sub>)-nel jelöljük. Azt mondjuk, hogy a &sum;(''z''<sub>n</sub>) sor konvergens és összege a ''w'' komplex szám, ha (''z''<sub>n</sub>) részletösszegeinek sorozata konvergens és határértéke ''w''. Ekkor az összeget a 
 
:<math>\sum\limits_{n=1}^{\infty}z_n</math>
 
szimbólummal jelöljük.
 
  
===Komponensek===
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.
 +
: <math>\lim\limits_{z\to z_0} f(z)=f(z_0)</math>
 +
A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció '''R'''<sup>2</sup>-ben lineáris legyen, hiszen ''a véges dimenziós normált terek között ható lineáris leképezések folytonosak.'' A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.
  
Az egyik módja, hogy a komplex sorok konvergenciáját visszavezessük a valósokra, ha a komponenssorozatokat vesszük:
 
:<math>\sum(z_n)=\sum(x_n+iy_n)\,  </math>
 
esetén az összegeket elképzelve, azokból az i kiemelhető, így
 
:<math>\sum(z_n)=\sum(x_n)+i\sum(y_n)\,  </math> 
 
ahol az összeget és a szorzást tagonként végezzük. Ekkor egy sor ponrosan akkor konvergens, ha mindkét komponense konvergens.
 
  
===Cauchy-kritérium és abszolút konvergencia===
+
'''Feladat.''' Legyen ''w'' &isin; '''C'''. Igazoljuk, hogy az alábbi függvények folytonosak!
 +
# <math>z\mapsto w + z\,</math>
 +
# <math>z\mapsto w\cdot z\,</math>
 +
# <math>z\mapsto \overline{z}\,</math> 
 +
# <math>z\mapsto \frac{1}{z}\quad\quad (z\ne 0)</math> 
  
Világos, hogy egy sor, mint részletösszegsorozat pontosan akkor konvergens, ha Cauchy-sorozat. Ez a Cauchy-kritérium sorokra.  
+
''Megoldás.''
  
Létezik az abszolút konvergencia fogalmai is. Egy sor abszolút konvergens, ha a tagjai abszolútértékéből képezett sorozat konvergens. Igaz az, hogy egy normált tér akkor és csak akkor teljes, ha minden abszolút konvergens sor konvergens benne. (És '''C''' teljes, mert minden Cauchy-sorozat konvergál benne, ami pont annak a módja, hogy belássuk az előbbi kritériumot.) Persze az előfordul a teljes terekben is, hogy konvergens sorozatok nem lesznek abszolút konvergensek.  
+
Az 1. az '''R'''<sup>2</sup>-ben eltolás a ''w''-nek megfelelő vektorral (Re(''w''), Im(''w''))-vel, így affin leképezés, ami folytonos.  
  
===Kritériumok az abszolút konvergenciára===
+
2. a ''w'' mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.
  
Az abszolút konvergencia fenti kritériumából egy sor komplex sorokra vonatkozó kritérium adódik a valósból.
+
3. azaz a konjugálás: (''x'',''y'') <math>\mapsto</math> (''x'',–''y'') a valós tengelyre való tükrözés, ami szintén lineáris.  
  
'''Tétel''' – Legyen (''z''<sub>n</sub>) komplex számsorozat.
+
Végül a reciprok:
# '''Szükséges kritérium:''' Ha  &sum;(''z''<sub>n</sub>) konvergens, akkor (''z''<sub>n</sub>) nulsorozat.
+
:<math>\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}</math>
# '''Geometriai sor:''' ha |''z''| < 1, akkor <math>\sum\limits_{(0)} (z^n)</math> konvergens és az összege:
+
így, mint '''R'''<sup>2</sup> &sup;<math>\to</math> '''R'''<sup>2</sup> függvény:
#:<math>\sum\limits_{n=0}^\infty z^n=\frac{1}{1-z}</math>  
+
:<math>\begin{pmatrix}
# '''Összehasonlító kritérium:'''  ha az &sum;(''r''<sub>n</sub>) valós sor konvergens és |''z''<sub>n</sub>| ≤ ''r''<sub>n</sub> majdnem minden ''n''-re, akkor  &sum;(''z''<sub>n</sub>) abszolút konvergens (''majoráns-kritérium''). Ha az &sum;(''r''<sub>n</sub>) pozitív valós sor divergens és  ''r''<sub>n</sub> ≤ |''z''<sub>n</sub>| m.m., akkor &sum;(''z''<sub>n</sub>) divergens (''minoráns-kritérium'').
+
x \\
# '''p-edik hatvány próba:''' ha ''p'' > 1  valós, akkor a <math>(\sum\limits_{1}\frac{1}{n^p})</math> valós sor konvergens.
+
y
#: Ha 0 ≤ ''p'' ≤ 1, akkor a <math>(\sum\limits_{1}\frac{1}{n^p})</math> valós sor divergens.
+
\end{pmatrix}\mapsto
# '''Hányadoskritérium:''' ha <math>\limsup\left|\frac{z_{n+1}}{z_n}\right|<1\,</math>, akkor &sum;(''z''<sub>n</sub>) abszolút konvergens. Ha a "liminf" > 1, akkor divergens
+
\begin{pmatrix}
# '''Gyökkritérium:''' ha <math>\limsup\sqrt[n]{|z_n|}<1\,</math>, akkor  &sum;(''z''<sub>n</sub>) abszolút konvergens. Ha a "limsup" > 1, akkor divergens.
+
\cfrac{x}{x^2+y^2} \\
 +
\cfrac{-y}{x^2+y^2}
 +
\end{pmatrix}</math>
 +
amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.
  
 
+
'''Feladat.''' Folytonos-e a ''z'' = 0-ban az  
'''Megjegyezzük,''' hogy ha a gyökök és hányadosok sorozata konvergál, akkor ugyanahhoz a számhoz konvergálnak.
+
:<math>f(z)=\left\{
 
+
 
+
'''4.'''
+
Konvergens-e illetve abszolút konvergens-e?
+
:<math>\sum\left(\frac{i^n}{n}\right)</math>
+
 
+
'''5.'''
+
#Konvergens-e és mi a határértéke: <math>\frac{n!}{n^n}i^n</math>
+
#Konvergens-e <math>\sum\left(\frac{n!}{n^n}i^n\right)</math>
+
#Milyen ''z''-re konvergens: <math>\sum\left(\frac{n!}{n^n}z^n\right)</math>
+
 
+
''(Útmutatás: használjuk a hányadoskritériumot, vagy vizsgáljuk, hogy milyen rendben tartanak a végtelenhez az összetevősorozatok.)''
+
 
+
:<math>\frac{\left|\frac{(n+1)!}{(n+1)^{n+1}}i^{n+1}\right|}{\left|\frac{n!}{n^n}i^n\right|}=\frac{n+1}{\left(1+\frac{1}{n}\right)^n\cdot(n+1)}\to\frac{1}{e}<1 </math>
+
azaz 0-hoz tart-
+
 
+
 
+
'''6.'''
+
#Konvergens-e és mi a határértéke: <math>\frac{1}{\left(1+\frac{i}{n}\right)^{n^4}}</math>
+
#Konvergens-e <math>\sum\left(\frac{1}{\left(1+\frac{i}{n}\right)^{n^4}}\right)</math>
+
#Milyen ''z''-re konvergens:<math>\sum\left(\frac{1}{\left(1+\frac{i|z|}{n}\right)^{n^4}}\right)</math>
+
 
+
''(Útmutatás: használjuk a gyökkritériumot.)''
+
 
+
:<math>\sqrt[n]{\left|1+\frac{i}{n}\right|^{n^4}}=\left|1+\frac{i}{n}\right|^{n^3}=\left(\sqrt{\left(1+\frac{1}{n^2}\right)^{n^2}}\right)^n\geq (1+\varepsilon)^n\to +\infty</math>
+
Így a reciproka a 0-hoz tart, azaz a limszup < 1.
+
 
+
==Komplex hatványsorok==
+
 
+
'''Definíció''' – ''Hatványsor'' – Legyen (''a''<sub>n</sub>) komplex számsorozat és ''z''<sub>0</sub> &isin; '''C'''. Ekkor az  &sum;(''a''<sub>n(</sub>id<sub>'''C'''</sub>-z<sub>0</sub>)<sup>n</sup>) függvénysort hatványsornak nevezzük és összegét, az
+
:<math>z\mapsto \sum\limits_{n=0}^\infty a_n(z-z_0)^n</math>
+
hozzárendelési utasítással értelmezett, a {''z'' &isin; | &sum;(''a''<sub>n</sub>(z-''z''<sub>0</sub>)<sup>n</sup>) konvergál } halmazon értelmezett függvényt a hatványsor '''összegének''' nevezzük. Középpontja ''z''<sub>0</sub>, együtthatósorozata (''a''<sub>n</sub>).
+
 
+
A továbbiakban csak a  &sum;(''a''<sub>n</sub>z<sup>n</sup>) alakú, azaz a 0 körüli hatványsorokkal foglalkozunk (ezzel nem csorbítjuk az általánosságot, mert eltolással megkaphatjuk a többit is).
+
 
+
'''Tétel''' – ''Cauchy–Hadamard-tétel'' – Ha (''a''<sub>n</sub>) komplex számsorozat, <math>c= \limsup\limits_{n}\sqrt[n]{|a_n|}</math> és
+
:<math>R=\left\{
+
 
\begin{matrix}
 
\begin{matrix}
0,& \mathrm{ha} &c=+\infty\\
+
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
+\infty,& \mathrm{ha} & c=0\\
+
\\
\frac{1}{c},& \mathrm{ha} & 0<c<+\infty
+
0,\quad\quad \mathrm{ha}\;z=0
 
\end{matrix}
 
\end{matrix}
 +
\right.</math>
  
\right.</math>
+
''Megoldás.''
akkor &sum;(''a''<sub>n</sub>z<sup>n</sup>) abszolút konvergens a B<sub>R</sub>(0) gömbön és divergens a  B<sub>1/R</sub>(&infin;) gömbön.
+
   
 +
Ha ''z'' = ''x'' + i''y'' és (''x'',''y'') &ne; (0,0), akkor:
 +
:<math>f(x,y)=\begin{pmatrix}
 +
\cfrac{y^3}{x^2+y^2} \\
 +
\cfrac{x^4}{x^2+y^2}
 +
\end{pmatrix}</math>  
  
A tétel minden részletre kiterjedő bizonyítását nem végezzük el, csak utalunk rá, hogy nyilvánvaló, hogy a Cauchy-féle gyökkritériumot kell benne használni. A tételbeli ''R'' sugarat a hatványsor ''konvergenciasugarának'' nevezzük. ''R''-et másként is kiszámíthajuk. Ha azt tudjuk, a hányadoskritérium alapján, hogy 
+
A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:
:<math>\exists\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|}</math>  
+
:<math>\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|</math>
akkor létezik és ezzel egyenlő az n-edik gyökök sorozata is: 
+
és  
:<math>\exists\lim\limits_{n\to \infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|}=\,''\,\frac{1}{R}\,''</math>  
+
:<math>\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2</math>
ahol az idézőjel azt jelzi, hogy a konvergenciasugár lehet végtelen vagy 0 is.
+
így (x,y)<math>\to</math>(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért ''f'' a 0-ban folytonos.  
  
  
'''7. Feladat.''' Mi az alábbi hatványsorok konvergenciaköre és -sugara?
+
Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő '''R'''<sup>2</sup>-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.
#<math>\sum\left((2i)^nn^3(z-i)^n\right)</math>
+
#<math>\sum\left(\mathrm{arc\,sin}\left(\frac{1}{n}\right)(z+1+i)^n\right)</math>
+
#<math>\sum\left(\frac{in^{2008}}{n!}z^n\right)</math>
+
  
 +
'''Állítás.''' Ha ''f'' és ''g'' komplex függvények és az ''z''<sub>0</sub>  pontban (mindketten értelmezettek és) folytonosak, akkor
 +
# ''f'' + ''g''
 +
# ''f'' <math>\cdot</math> ''g''
 +
# <math>\overline{f}</math>
 +
# ''g''(''z''<sub>0</sub>) &ne; 0 esetén ''f''/''g''
 +
is folytonos ''z''<sub>0</sub>-ban. 
  
'''Analitikus'''nak nevezünk egy ''f'' komplex függvényt, a ''z''<sub>0</sub> pontban, ha van olyan &delta; sugarú környezet és &sum;(''a''<sub>n</sub>(z-z<sub>0</sub>)<sup>n</sup>) hatványsor, hogy minden ''z'' &isin; B<sub>&delta;</sub>(''z''<sub>0</sub>)-ra ''f'' érelmezett, &sum;(''a''<sub>n</sub>(z-z<sub>0</sub>)<sup>n</sup>) konvergens és
 
:<math>f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n</math>
 
Ezt úgy jelöljük, hogy ''f'' &isin; C<sup>&omega;</sup>(''z''<sub>0</sub>).
 
  
'''8. Feladat'''
+
Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).
# Van-e olyan <math>\sum\limits_{(0)}(a_n(z-2))</math> hatványsor, mely konvergál a 0-ban, de divergál a 3-ban. Konvergál 2-ben, de divergál az 2,000001-ben?
+
# Igazoljuk, hogy az alábbi függvény analitikus a nullában. Mi sorfejtés a konvergenciaköre?
+
#:<math>f(z) = \frac{1}{4+z^2} \,</math>
+
  
===Hatványsorok összegfüggvényének folytonossága és differenciálhatósága===
+
==Komplex számkör unicitása==
 +
'''C''', azaz a komplex számok teste kétdimenziós valós vektortér. '''C''' elemei  reprezentálhatók az '''R'''<sup>2</sup> síkon, a következő megfeleltetésekkel:
 +
:<math>\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2</math>
 +
a vektortérműveletek pedig:
 +
:<math>\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2</math> vektorösszeadás (''a'', ''b'', ''c'', ''d'' &isin; '''R''')
 +
:<math>\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2</math> valós számmal való szorzás (&lambda;, ''a'', ''b'' &isin; '''R''')
  
'''Tétel''' – Ha (''a''<sub>n</sub>) komplex számsorozat, akkor az  &sum;(''a''<sub>n</sub>z<sup>n</sup>) hatványsor összegfüggvénye folytonos a konvergenciakör belsejében. Sőt, reguláris is ott.  
+
A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. '''C''' nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt '''C''' ''az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra'' -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).
  
Emlékeztetünk arra, hogy egy függvény reguláris egy pontban, ha a pont egy környezetében mindenütt értelmezett és komplex deriválható. A tétel szerint tehát analitikus függvény reguláris. A döbbenetes azonban, hogymint később kiderül: reguláris függvény analitikus: ''f'' &isin; C<sup>&omega;</sup>(''z''<sub>0</sub>) akkor és csak akkr, ha ''f'' &isin; Reg(''z''<sub>0</sub>).
+
A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa
 +
:<math>\begin{pmatrix}
 +
a & -b\\
 +
b & a
 +
\end{pmatrix}</math>
 +
A komplex számok szorzása itt a mátrixszorzás.
  
''Bizonyítás.'' Legyen ''z'' a konvergenciakör egy belső pontja és &Delta;''z'' olyan, hogy még ''z'' + &Delta;''z'' is a konvergenciakör belsejébe esik. Ekkor:
 
: <math>\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n=
 
\sum\limits_{n=0}^{\infty}a_n((z+\Delta z)^n-z^n)=</math>
 
mert mindkét sor konvergens, ekkor algebrai azonosságokkal:
 
:<math>=\Delta z\sum\limits_{n=0}^{\infty}a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}</math>
 
vagy ha tetszik nemnulla &Delta;''z''-vel:
 
:<math>\frac{\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n}{\Delta z}=\sum\limits_{n=0}^{\infty}a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}</math>
 
a jobb oldalon álló sor konvergenciáját a gyökkritériummal láthatjuk be:
 
:<math>\left|a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}\right|\leq|a_n|\cdot n r^n</math>
 
ahol r olyan pozitív szám, hogy | ''z'' + &Delta;''z'' | < r < R (ez  utóbbi a hatványsor konvergenciasugára). És
 
:<math>\limsup\limits_{n\to \infty}\sqrt[n]{|a_n|\cdot n r^n}=\limsup\limits_{n\to \infty}\sqrt[n]{|a_n|}\cdot 1 \cdot r\leq\frac{1}{R}r<1\,</math>
 
Így azt kaptuk, hogy minden olyan  &Delta;''z''-re, melyre | ''z'' + &Delta;''z'' | < r, teljesül és |&Delta;''z''| <&epsilon;/(1+&sum;<sub>n</sub>|a<sub>n</sub>|nr<sup>n</sup>)=:&delta;
 
:<math>\left|\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n\right|\leq|\Delta z|\cdot \sum\limits_{n=0}^\infty|a_n|nr^n<\varepsilon.</math>
 
  
Hosszadalmasabb számolásokkal, de lényegében ugyanígy kimutatható, hogy a hatványsor összegfüggvénye komplex differenciálható is a konvergenciakör belsejében és deriváltja a formális tagonkénti deriválásal kapott sor összegfüggvényével egyenlő, tehát:
 
:<math>\left(\sum\limits_{n=0}^{\infty}a_nz^n\right)'=\sum\limits_{n=1}^{\infty}a_n n z^{n-1}</math>
 
  
  
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]

A lap 2013. szeptember 15., 10:24-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Integráló tényező

Általában egy P(x,y)dx+Q(x,y)dy=0 alakú differenciálegyenlet esetén nem teljesül a rot(P,Q)=0 feltétel. Esetenként azonban található olyan μ kétváltozós pozitív értékű függvény, amellyel:

\mu(x,y) P(x,y)+y'\mu(x,y) Q(x,y)=0\,

már egzakt egyenlet. Vizsáljuk meg miből nyerhetjük az ilyen μ un. integráló szorzót! A rot(μP,μQ)=0 feltétel a következő:

\frac{\partial\mu P}{\partial y}=\frac{\partial\mu Q}{\partial x}\,
\mu\frac{\partial P}{\partial y}+P\frac{\partial\mu }{\partial y}=\mu\frac{\partial Q}{\partial x}+Q\frac{\partial \mu}{\partial x}\,
\mu\cdot\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}-P\frac{\partial\mu }{\partial y}\,

Ezt a parciális differenciálegyenletet kell megoldanunk ahhoz, hogy legyen integráló tényezőnk.

Példa

Tanulságképpen megállapíthatjuk, hogy néha érdemes a μ-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ha ugyanis csak a μ=μ(x) alakú integráló szorzókra szorítkozunk, akkor a megoldandó egyenlet:

\mu\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}\,

azaz

\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{1}{\mu}\frac{\partial \mu}{\partial x}\,
R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \mathrm{ln}\,\mu}{\partial x}\quad\quad\mu(x)=e^{\int R(x)\mathrm{dx}}

Az ilyen alak feltétele tehát az, hogy a

\frac{-\mathrm{rot}\,(P,Q)}{Q}

csak x-től függjön (vagy a -rot(P,Q)/P csak y-tól és akkor μ csak y-tól függ).

Példa. Oldjuk meg az

y'=\frac{x^3+y^3}{xy^2}\,

egyenletet!

Mo. Átrendezve:

(x^3+y^3)\mathrm{d}x-xy^2\mathrm{d}y=0\,

yP=3y2, ∂xQ=-y2, azaz

\frac{-\mathrm{rot}\,(P,Q)(x,y)}{Q(x,y)}=\frac{3y^2+y^2}{-xy^2}=\frac{-4}{x}

azaz célravezet, ha μ-t μ(x) alakban keressük. Ekkor

\mu(x)=\frac{1}{x^4}

Ekkor az egyenlet:

\left(\frac{1}{x}+\frac{y^3}{x^4}\right)\mathrm{d}x-\frac{y^2}{x^3}\mathrm{d}y=0\,

egzakt, mert

\frac{3y^2}{x^4}-(-1)\frac{-3y^2}{x^4}=0\,

Integrálássa:

F(x,y)=\mathrm{ln}|x|+\frac{1}{-3}\frac{y^3}{x^3}+C(y),\quad\quad F(x,y)=-\frac{1}{3}\frac{y^3}{x^3}+C(x)\,

azaz

\mathrm{ln}|x|-\frac{1}{3}\frac{y^3}{x^3}=C
3x^3\mathrm{ln}\,c|x|=y^3
x\sqrt[3]{3\,\mathrm{ln}\,c|x|}=y(x)\,

Elméleti példa

Példa. Keressünk integráló tényezőt az

y'+f(x)y=g(x)\,

közönséges elsőrendű inhomogén lineáris differenciálegyenlethez!

Világos, hogy nem egzakt, mert a

\mathrm{d}y-(g(x)-f(x)y)\,\mathrm{d}x=0

alakban a keresztben vett deriváltak: 0 és f(x).

Q=1 és P(x,y)=-g(x)+f(x)y ezért a μ-t adó parc.diff. egyenlet:

\mu f=\frac{\partial \mu}{\partial x}-(g(x)-f(x)y)\frac{\partial\mu }{\partial y}\,

Elegendő egy partikuláris megoldást találni, amit egyszerűen megkapunk, ha csak az olyan μ-ket keressük, amik csak az x-től függenek, ekkor ugyanis pl. g(x) nem is lesz az egyenletben. Ilyet találunk, mert:

\mu f=\frac{\partial \mu}{\partial x}\,
\mu f(x)=\mu'\,

Ez egy szeparábilis, aminek a megoldása:

f(x)=\frac{\mu'}{\mu}\,
f(x)=(\mathrm{ln}\,\mu)'\,

egy partikuláris megoldás:

\mu(x)=e^{F(x)}\,

ahol F'=f.

HF: Keressük meg ezzel az integáló szorzóval az általános megoldást!

Mo.

e^{F(x)}\mathrm{d}y+(-g(x)+f(x)y)e^{F(x)}\,\mathrm{d}x=0

Már egzakt, hiszen

e^{F(x)}f(x)=f(x)e^{F(x)}\,

Ekkor

\Phi(x,y)=ye^{F(x)}+C(x),\quad\quad \Phi(x,y)=ye^{F(x)}+\int -g(x)e^{F(x)}\,\mathrm{d}x+C(y)

azaz C=ye^{F(x)}-\int g(x)e^{F(x)}\,\mathrm{d}x


Komplex számkör és reprezentációi

A komplex számok C halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.

Algebrai modell

A komplex számok olyan

a+b\mathrm{i}\,

alakú formális kifejezések, ahol a és b valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy

\mathrm{i}^2=-1\,

A komplex számok halmazát a C szimbólummal jelöljük, tehát

z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})

itt a-t a z valós részének nevezzük és Re(z)-vel jelöljük, b-t a z képzetes részének nevezzük és Im(z)-vel jelöljük. Világos, hogy Im(z) ∈ R, azaz "tiszta" valós.

Megjegyzés. A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok R[X] halmazából. Közismert, hogy a valósegyütthatós, egyhatározatlanú polinomokal, azaz a

a_0+a_1x+a_2x^2+...+a_nx^n\,

alakú kifejezésekkel, ahol az ai-k valós számok, n pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor

\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)

azaz a komplex számok halmaza a valósegyütthatós polinomok x2+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll

m(x)=a+bx\,

alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az összeadás a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x2+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a

m(x)^2+1=0\,

polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor

m(x)^2=-1\,

azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az m(x)=x polinom az, mely az i egység szerepét játssza és így is jelöljük ezt ezentúl.


Akárcsak a legfeljebb elsőfokú a + bx alakú polinomok esetén, a C-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az a + bx alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i2=-1 egyenlőség miatt visszaérkeznek az a + bi alakú kifejezések körébe. Ezért lesz C zárt arra a szorzásra, amit a polinomok mintájára definiálunk.

Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:

Állítás. A C számkör a komplex számok

(a+bi) + (c+di) = (a+c) + (b+d)i összeadásával és a
λ(a+bi) = λa + λbi, a λ valós számmal való szorzással

kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok R2 vektorterével.

Halmazelméleti modell

Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az a + bi alakú formális kifejezéseken az R[X] polinomgyűrűnek az (1+X2) polinommal történő maradékos osztásának maradékait értjük).

A számpár reprezentációban:

\mathbf{C}=\mathbf{R}^{2}\,

az összeadás az R2-beli vektorösszeadás, a szorzás, pedig a

(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,

művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.

Ez az interpretáció azért fontos, mert explicitté teszi, hogy a C örökli az R2 topológiáját.

Geometriai modell

A szorzással együtt C egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2×2-es valós mátrixon M2×2 (R) algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az R2 síkon:

\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
\begin{pmatrix}
r\cos\varphi  & -r\sin\varphi\\
r\sin\varphi  & r\cos\varphi
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})

Világos, hogy ekkor az a + bi kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:

\left\{\begin{pmatrix}
a  & -b\\
b  & \;\;a
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}

Ez a mátrixhalmaz kétdimenziós altér az M2×2 (R) algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.

C topológiája

R2 gömbi környezetei lesznek C gömbi környezetei. Általában, minden topologikus fogalom C-ben R2-re vezetünk vissza. Tehát, adott r > 0 valós számra és z0C számra:

\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}

az r sugarú z0 középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||2 euklideszi norma, elvileg R2 bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. Ω ⊆ C nyílt, ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:

\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega

Egy AC halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van A-ban

\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}

Mivel R2-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és R2-R2 függvények között a következő azonosítással élhetünk. Ha f: C\rightarrowC függvény, akkor z = x + iy, f(z)=u(x,y)+iv(x,y), ill.

f\equiv\begin{pmatrix}u\\v\end{pmatrix}

Folytonosság

Azt mondjuk, hogy az AC halmazon értelmezett f függvény folytonos a zA pontban, ha z-ben f folytonos mint R2A \to R2 függvény. Maga az f folytonos, ha az értelmezési tartománya minden pontjában folytonos.

A többváltozós valós analízisből ismert tény miatt fennáll:

Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha f-et a következő alakban írjuk:

f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)

ahol u és v valós értékű függvények (rendre Re(f) és Im(f)), továbbá z0 = x0 + iy0 ∈ Dom(f), akkor a következők ekvivalensek:

  1. f folytonos a z0-ban
  2. u és v függvények folytonosak az (x0,y0)-ban


A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a z = x + iy pontban a limx u + i limy v szám adja. Ekkor


Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.

\lim\limits_{z\to z_0} f(z)=f(z_0)

A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció R2-ben lineáris legyen, hiszen a véges dimenziós normált terek között ható lineáris leképezések folytonosak. A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.


Feladat. Legyen wC. Igazoljuk, hogy az alábbi függvények folytonosak!

  1. z\mapsto w + z\,
  2. z\mapsto w\cdot z\,
  3. z\mapsto \overline{z}\,
  4. z\mapsto \frac{1}{z}\quad\quad (z\ne 0)

Megoldás.

Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.

2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.

3. azaz a konjugálás: (x,y) \mapsto (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.

Végül a reciprok:

\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}

így, mint R2\to R2 függvény:

\begin{pmatrix}
x \\
y
\end{pmatrix}\mapsto 
\begin{pmatrix}
\cfrac{x}{x^2+y^2} \\
\cfrac{-y}{x^2+y^2}
\end{pmatrix}

amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.

Feladat. Folytonos-e a z = 0-ban az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
\\
0,\quad\quad \mathrm{ha}\;z=0
\end{matrix}
\right.

Megoldás.

Ha z = x + iy és (x,y) ≠ (0,0), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{y^3}{x^2+y^2} \\
\cfrac{x^4}{x^2+y^2}
\end{pmatrix}

A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:

\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|

és

\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2

így (x,y)\to(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.


Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.

Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor

  1. f + g
  2. f \cdot g
  3. \overline{f}
  4. g(z0) ≠ 0 esetén f/g

is folytonos z0-ban.


Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).

Komplex számkör unicitása

C, azaz a komplex számok teste kétdimenziós valós vektortér. C elemei reprezentálhatók az R2 síkon, a következő megfeleltetésekkel:

\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2

a vektortérműveletek pedig:

\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2 vektorösszeadás (a, b, c, dR)
\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2 valós számmal való szorzás (λ, a, bR)

A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. C nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt C az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).

A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa

\begin{pmatrix} 
a & -b\\
b & a
\end{pmatrix}

A komplex számok szorzása itt a mátrixszorzás.

Személyes eszközök