Matematika A3a 2008/3. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Integráló tényező)
(Példa)
15. sor: 15. sor:
 
Ezt a parciális differenciálegyenletet kell megoldanunk ahhoz, hogy legyen integráló tényezőnk.
 
Ezt a parciális differenciálegyenletet kell megoldanunk ahhoz, hogy legyen integráló tényezőnk.
  
==Példa==
+
==Speciális esetek==
Tanulságképpen megállapíthatjuk, hogy néha érdemes a μ-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ha ugyanis csak a μ=μ(x) alakú integráló szorzókra szorítkozunk, akkor a megoldandó egyenlet:
+
Megállapíthatjuk, hogy néha érdemes a μ-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ez a következő esekben áll elő.
:<math>\mu\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}\,</math>
+
 
azaz
+
I. Keressük a megoldást a &mu;=&mu;(x) feltevéssel! Ekkor
:<math>\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{1}{\mu}\frac{\partial \mu}{\partial x}\,</math>
+
:<math>R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \ln\mu}{\partial x}\,</math>
:<math>R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \mathrm{ln}\,\mu}{\partial x}\quad\quad\mu(x)=e^{\int R(x)\mathrm{dx}}</math>
+
csak x-től függ és innen az integráló szorzó:
Az ilyen alak feltétele tehát az, hogy a
+
:<math>\mu(x)=e^{\int R(x)\;dx}</math>
:<math>\frac{-\mathrm{rot}\,(P,Q)}{Q}</math>
+
 
csak x-től függjön (vagy a -rot(P,Q)/P csak y-tól és akkor &mu; csak y-tól függ).
+
  
 
'''Példa.''' Oldjuk meg az  
 
'''Példa.''' Oldjuk meg az  

A lap 2013. szeptember 28., 10:12-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Integráló tényező

Általában egy P(x,y)dx+Q(x,y)dy=0 alakú differenciálegyenlet esetén nem teljesül a rot(P,Q)=0 feltétel. Esetenként azonban található olyan μ kétváltozós pozitív értékű függvény, amellyel:

\mu(x,y) P(x,y)+y'\mu(x,y) Q(x,y)=0\,

már egzakt egyenlet. Vizsáljuk meg miből nyerhetjük az ilyen μ un. integráló szorzót! A rot(μP,μQ)=0 feltétel a következő:

\frac{\partial\mu P}{\partial y}=\frac{\partial\mu Q}{\partial x}\,
\mu\frac{\partial P}{\partial y}+P\frac{\partial\mu }{\partial y}=\mu\frac{\partial Q}{\partial x}+Q\frac{\partial \mu}{\partial x}\,
\mu\cdot\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}-P\frac{\partial\mu }{\partial y}\,

Mivel

\frac{1}{\mu}\frac{\partial \mu}{\partial x}=\frac{\partial \ln\mu }{\partial x}

és ugyanígy

\frac{1}{\mu}\frac{\partial \mu}{\partial y}=\frac{\partial \ln\mu }{\partial y}

ezért

\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \ln\mu}{\partial x}-P\frac{\partial\ln\mu}{\partial y}\,

Ezt a parciális differenciálegyenletet kell megoldanunk ahhoz, hogy legyen integráló tényezőnk.

Speciális esetek

Megállapíthatjuk, hogy néha érdemes a μ-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ez a következő esekben áll elő.

I. Keressük a megoldást a μ=μ(x) feltevéssel! Ekkor

R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \ln\mu}{\partial x}\,

csak x-től függ és innen az integráló szorzó:

\mu(x)=e^{\int R(x)\;dx}


Példa. Oldjuk meg az

y'=\frac{x^3+y^3}{xy^2}\,

egyenletet!

Mo. Átrendezve:

(x^3+y^3)\mathrm{d}x-xy^2\mathrm{d}y=0\,

yP=3y2, ∂xQ=-y2, azaz

\frac{-\mathrm{rot}\,(P,Q)(x,y)}{Q(x,y)}=\frac{3y^2+y^2}{-xy^2}=\frac{-4}{x}

azaz célravezet, ha μ-t μ(x) alakban keressük. Ekkor

\mu(x)=\frac{1}{x^4}

Ekkor az egyenlet:

\left(\frac{1}{x}+\frac{y^3}{x^4}\right)\mathrm{d}x-\frac{y^2}{x^3}\mathrm{d}y=0\,

egzakt, mert

\frac{3y^2}{x^4}-(-1)\frac{-3y^2}{x^4}=0\,

Integrálássa:

F(x,y)=\mathrm{ln}|x|+\frac{1}{-3}\frac{y^3}{x^3}+C(y),\quad\quad F(x,y)=-\frac{1}{3}\frac{y^3}{x^3}+C(x)\,

azaz

\mathrm{ln}|x|-\frac{1}{3}\frac{y^3}{x^3}=C
3x^3\mathrm{ln}\,c|x|=y^3
x\sqrt[3]{3\,\mathrm{ln}\,c|x|}=y(x)\,

Elméleti példa

Példa. Keressünk integráló tényezőt az

y'+f(x)y=g(x)\,

közönséges elsőrendű inhomogén lineáris differenciálegyenlethez!

Világos, hogy nem egzakt, mert a

\mathrm{d}y-(g(x)-f(x)y)\,\mathrm{d}x=0

alakban a keresztben vett deriváltak: 0 és f(x).

Q=1 és P(x,y)=-g(x)+f(x)y ezért a μ-t adó parc.diff. egyenlet:

\mu f=\frac{\partial \mu}{\partial x}-(g(x)-f(x)y)\frac{\partial\mu }{\partial y}\,

Elegendő egy partikuláris megoldást találni, amit egyszerűen megkapunk, ha csak az olyan μ-ket keressük, amik csak az x-től függenek, ekkor ugyanis pl. g(x) nem is lesz az egyenletben. Ilyet találunk, mert:

\mu f=\frac{\partial \mu}{\partial x}\,
\mu f(x)=\mu'\,

Ez egy szeparábilis, aminek a megoldása:

f(x)=\frac{\mu'}{\mu}\,
f(x)=(\mathrm{ln}\,\mu)'\,

egy partikuláris megoldás:

\mu(x)=e^{F(x)}\,

ahol F'=f.

HF: Keressük meg ezzel az integáló szorzóval az általános megoldást!

Mo.

e^{F(x)}\mathrm{d}y+(-g(x)+f(x)y)e^{F(x)}\,\mathrm{d}x=0

Már egzakt, hiszen

e^{F(x)}f(x)=f(x)e^{F(x)}\,

Ekkor

\Phi(x,y)=ye^{F(x)}+C(x),\quad\quad \Phi(x,y)=ye^{F(x)}+\int -g(x)e^{F(x)}\,\mathrm{d}x+C(y)

azaz C=ye^{F(x)}-\int g(x)e^{F(x)}\,\mathrm{d}x


Komplex számkör és reprezentációi

A komplex számok C halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.

Algebrai modell

A komplex számok olyan

a+b\mathrm{i}\,

alakú formális kifejezések, ahol a és b valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy

\mathrm{i}^2=-1\,

A komplex számok halmazát a C szimbólummal jelöljük, tehát

z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})

itt a-t a z valós részének nevezzük és Re(z)-vel jelöljük, b-t a z képzetes részének nevezzük és Im(z)-vel jelöljük. Világos, hogy Im(z) ∈ R, azaz "tiszta" valós.

Megjegyzés. A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok R[X] halmazából. Közismert, hogy a valósegyütthatós, egyhatározatlanú polinomokal, azaz a

a_0+a_1x+a_2x^2+...+a_nx^n\,

alakú kifejezésekkel, ahol az ai-k valós számok, n pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor

\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)

azaz a komplex számok halmaza a valósegyütthatós polinomok x2+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll

m(x)=a+bx\,

alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az összeadás a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x2+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a

m(x)^2+1=0\,

polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor

m(x)^2=-1\,

azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az m(x)=x polinom az, mely az i egység szerepét játssza és így is jelöljük ezt ezentúl.


Akárcsak a legfeljebb elsőfokú a + bx alakú polinomok esetén, a C-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az a + bx alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i2=-1 egyenlőség miatt visszaérkeznek az a + bi alakú kifejezések körébe. Ezért lesz C zárt arra a szorzásra, amit a polinomok mintájára definiálunk.

Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:

Állítás. A C számkör a komplex számok

(a+bi) + (c+di) = (a+c) + (b+d)i összeadásával és a
λ(a+bi) = λa + λbi, a λ valós számmal való szorzással

kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok R2 vektorterével.

Halmazelméleti modell

Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az a + bi alakú formális kifejezéseken az R[X] polinomgyűrűnek az (1+X2) polinommal történő maradékos osztásának maradékait értjük).

A számpár reprezentációban:

\mathbf{C}=\mathbf{R}^{2}\,

az összeadás az R2-beli vektorösszeadás, a szorzás, pedig a

(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,

művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.

Ez az interpretáció azért fontos, mert explicitté teszi, hogy a C örökli az R2 topológiáját.

Geometriai modell

A szorzással együtt C egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2×2-es valós mátrixon M2×2 (R) algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az R2 síkon:

\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
\begin{pmatrix}
r\cos\varphi  & -r\sin\varphi\\
r\sin\varphi  & r\cos\varphi
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})

Világos, hogy ekkor az a + bi kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:

\left\{\begin{pmatrix}
a  & -b\\
b  & \;\;a
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}

Ez a mátrixhalmaz kétdimenziós altér az M2×2 (R) algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.

C topológiája

R2 gömbi környezetei lesznek C gömbi környezetei. Általában, minden topologikus fogalom C-ben R2-re vezetünk vissza. Tehát, adott r > 0 valós számra és z0C számra:

\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}

az r sugarú z0 középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||2 euklideszi norma, elvileg R2 bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. Ω ⊆ C nyílt, ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:

\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega

Egy AC halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van A-ban

\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}

Mivel R2-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és R2-R2 függvények között a következő azonosítással élhetünk. Ha f: C\rightarrowC függvény, akkor z = x + iy, f(z)=u(x,y)+iv(x,y), ill.

f\equiv\begin{pmatrix}u\\v\end{pmatrix}

Folytonosság

Azt mondjuk, hogy az AC halmazon értelmezett f függvény folytonos a zA pontban, ha z-ben f folytonos mint R2A \to R2 függvény. Maga az f folytonos, ha az értelmezési tartománya minden pontjában folytonos.

A többváltozós valós analízisből ismert tény miatt fennáll:

Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha f-et a következő alakban írjuk:

f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)

ahol u és v valós értékű függvények (rendre Re(f) és Im(f)), továbbá z0 = x0 + iy0 ∈ Dom(f), akkor a következők ekvivalensek:

  1. f folytonos a z0-ban
  2. u és v függvények folytonosak az (x0,y0)-ban


A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a z = x + iy pontban a limx u + i limy v szám adja. Ekkor


Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.

\lim\limits_{z\to z_0} f(z)=f(z_0)

A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció R2-ben lineáris legyen, hiszen a véges dimenziós normált terek között ható lineáris leképezések folytonosak. A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.


Feladat. Legyen wC. Igazoljuk, hogy az alábbi függvények folytonosak!

  1. z\mapsto w + z\,
  2. z\mapsto w\cdot z\,
  3. z\mapsto \overline{z}\,
  4. z\mapsto \frac{1}{z}\quad\quad (z\ne 0)

Megoldás.

Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.

2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.

3. azaz a konjugálás: (x,y) \mapsto (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.

Végül a reciprok:

\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}

így, mint R2\to R2 függvény:

\begin{pmatrix}
x \\
y
\end{pmatrix}\mapsto 
\begin{pmatrix}
\cfrac{x}{x^2+y^2} \\
\cfrac{-y}{x^2+y^2}
\end{pmatrix}

amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.

Feladat. Folytonos-e a z = 0-ban az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
\\
0,\quad\quad \mathrm{ha}\;z=0
\end{matrix}
\right.

Megoldás.

Ha z = x + iy és (x,y) ≠ (0,0), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{y^3}{x^2+y^2} \\
\cfrac{x^4}{x^2+y^2}
\end{pmatrix}

A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:

\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|

és

\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2

így (x,y)\to(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.


Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.

Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor

  1. f + g
  2. f \cdot g
  3. \overline{f}
  4. g(z0) ≠ 0 esetén f/g

is folytonos z0-ban.


Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).

Komplex számkör unicitása

C, azaz a komplex számok teste kétdimenziós valós vektortér. C elemei reprezentálhatók az R2 síkon, a következő megfeleltetésekkel:

\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2

a vektortérműveletek pedig:

\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2 vektorösszeadás (a, b, c, dR)
\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2 valós számmal való szorzás (λ, a, bR)

A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. C nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt C az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).

A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa

\begin{pmatrix} 
a & -b\\
b & a
\end{pmatrix}

A komplex számok szorzása itt a mátrixszorzás.

2. gyakorlat
4. gyakorlat
Személyes eszközök