Matematika A3a 2008/4. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Homogén fokszámú egyenletek)
(Rezonanciák)
 
(egy szerkesztő 44 közbeeső változata nincs mutatva)
1. sor: 1. sor:
 
''<sub><[[Matematika A3a 2008]]</sub>''  
 
''<sub><[[Matematika A3a 2008]]</sub>''  
 +
==Állandó együtthatós lineáris differenciálegyenlet==
  
==Szeparábilis differenciálegyenlet==
+
Csak a másodrendű esetet tárgyaljuk:
 +
:<math>ay''+by'+cy=h(x)\,</math>
 +
ha ''a'', ''b'', ''c'' &isin; '''R'''.
  
'''1. Feladat.''' Milyen függvények elégítik ki az alábbi differenciálegynletet. Van-e olyan, mely a 0-ban 0-t vesz föl, illetve a 0-ban 1-et?
+
Ilyenkor a homogén egyenlet megoldását az ''a''&lambda;<sup>2</sup>+''b''&lambda;+''c''=0 karakterisztikus egyenlet megoldásából származó &lambda; gyökökből száraztatjuk (bizonyítása a bizonyítások között).
:<math>y'=\frac{\sin x}{y^6}\,</math>
+
''Megoldás.'' Nyilván a megoldás sehol sem vehet föl nulla értéket, mert akkor
+
:<math>\frac{\sin x}{y^6(x)}\,</math>
+
ott nem lenne értelmezve.
+
  
A mechanikus megoldási eljárás a következő:
+
{| class="wikitable"
:<math>\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\sin x}{y^6}\,</math>
+
|-
:<math>y^6\mathrm{d}y=\sin(x)\,\mathrm{d}x\,</math>
+
| <math>\lambda_1\ne\lambda_2\in\mathbf{R}\,</math>
:<math>\int y^6\mathrm{d}y=\int \sin(x)\,\mathrm{d}x\,</math>
+
| <math>y_H(x)=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}</math>
:<math>\frac{y^7}{7}=-\cos(x)+C\,</math>
+
|-
ez az implicit általános megoldás és
+
| <math>\lambda_1=\lambda_2=\lambda\in\mathbf{R}\,</math>
:<math>y(x)=\sqrt[7]{-7\cos(x)+C}\,</math>
+
| <math>y_H(x)=C_1e^{\lambda x}+C_2xe^{\lambda x}\,</math>
az explicit általános megoldás.
+
|-
 +
| <math>\lambda_{1,2}=\alpha\pm\beta i\in\mathbf{C}\,</math>
 +
| <math>y_H(x)=C_1e^{\alpha x}\cos(\beta x)+C_2e^{\alpha x}\sin(\beta x)\,</math>
 +
|}
  
A megoldás mechanikus megkeresése után meg kell jegyeznünk, hogy csak olyan intervallumokra kell szorítkoznunk, ahol az y nem ad nullát. Ezeken belül vannak olyan esetek, melyek nem is differenciálhatók a 7. gyök miatt.
+
Az inhomogén egyenlet megoldását a következő alakban keressük. Ha az inhomogén tag az alábbi alakban írható
 +
:<math>h(x)=e^{ax}\left(p(x)\cos(bx)+q(x)\sin(bx)\right)</math>
 +
ahol p(x) és q(x) polinomok és a ''a''+i''b'' &isin; '''C''' szám ''m'' szeres gyöke az ''a''&lambda;<sup>2</sup>+''b''&lambda;+''c'' karakterisztikus polinomnak, akkor az y<sub>p</sub>(x) partikuláris megoldásra a feltevés:
 +
:<math>y_p(x)=x^me^{ax}\left(P(x)\cos(bx)+Q(x)\sin(bx)\right)</math>
 +
ahol P(x) és Q(x) olyan polinomok, hogy deg P(x)=deg Q(x)= max{deg p(x), deg q(x)}.
  
(0,1)-en áthaladó megoldás a C = 8/7-es görbe.  
+
Ha '''nincs''' külső rezonancia, akkor az alábbi "szimbolikus" táblázat súg, hogy az inhomogén tag (gerjesztés) ismeretében milyen alakban keressük a partikuláris megoldást. (Ha van külső rezonancia, akkor annyiszor szorozzuk meg ''x''-szel ezt az értéket, hogy az már éppen lineárisan független legyen a homogén alapmegoldásoktól.)
  
===Egzisztencia és unicitás===
+
{| class="wikitable"
 +
|-
 +
! <math>h(x)\,</math>
 +
! <math>y_P(x)\,</math>
 +
|-
 +
| <math>7x-8\,</math>
 +
| <math>Ax+B\,</math>
 +
|-
 +
| <math>-x^2+\frac{1}{8}x-\sqrt{2}\,</math>
 +
| <math>Ax^2+Bx+C\,</math>
 +
|-
 +
| <math>\frac{1}{7}e^{2x}\,</math>
 +
| <math>Ae^{2x}\,</math>
 +
|-
 +
| <math>\sin(3x),\;\cos(3x)</math>
 +
| <math>A\sin(3x)+B\cos(3x)\,</math>
 +
|}
  
Legyen ''f'' : ''I'' <math>\to</math> '''R''', ''g'': ''J''  <math>\to</math> '''R''' intervallumon értelmezett folytonos függvények, ahol ''g'' sehol sem nulla. Ekkor az y: ''K'' <math>\to</math> '''J''' differenciálható függvény, ahol ''K'' &sube; ''I'' megoldása az
+
===Rezonanciák===
:<math>y'=f(x)g(y)\,</math>
+
'''1.''' <math>y''+9y=\sin(3x)\,</math>
ún. szeparábilis diffegyenletnek, ha minden ''x'' &isin; ''K''-ra:
+
:<math>y'(x)=f(x)g(y(x))\,</math>
+
  
Ekkor a helyettesítéses integrálás szabálya miatt
+
''Mo.'' <math>\lambda^2+9=0\,</math>, azaz <math>\lambda_{1,2}=\pm 3i\,</math>. Innen
:<math>\int\frac{y'}{g(y)}\,dy=G(y)=\int f(x)\,dx=F(x)+C</math>
+
:<math>y_H(x)=C_1\cos(3x)+C_2\sin(3x)\,</math>
azaz
+
Mivel
:<math>G\circ y= F+C\,</math>
+
:<math>h(x)=\sin(3x)\,</math>
ahol G az 1/g egy integrálfüggvénye, F az f-é.
+
ezért <math>a+bi=3i</math> egyszeres megoldása a karakterisztikus egyenletnek, m=1 és az általános P(x), Q(x) polinomok konstansok: A,B, így az inhomogén egyenlet egy partikuláris megoldását az
 +
:<math>y_p(x)=Ax\cos(3x)+Bx\sin(3x)\,</math>
 +
alakban keresendő.
  
Ennek a függvlnyegyenletnek a differenciálható megoldásai megoldások és ezt nevezzük a diffegyenlet implicit alakban adott általános megoldásának.
+
'''2.''' <math>y''-4y'+4y=e^{2x}\,</math>
  
Ha G injektív, akkor az explicit általános megoldás globális:
+
''Mo.'' <math>\lambda^2-4\lambda+4=0\,</math>, azaz <math>\lambda_{1,2}=2\,</math>. Innen
:<math>y(x)=G^{-1}(F(x)+C)\,</math>  
+
:<math>y_H(x)=C_1e^{2x}+C_2xe^{2x}\,</math>
 +
Mivel
 +
:<math>h(x)=e^{2x}\,</math>
 +
ezért <math>a=2</math> kétszeres megoldása a karakterisztikus egyenletnek, és ezért m=2 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik, de P(x)=A állandó, így az inhomogén egyenlet egy partikuláris megoldását az
 +
:<math>y_p(x)=Ax^2e^{2x}\,</math>
 +
alakban keresendő.
  
Ha G nem injektív, de van, ahol a deriváltja nem nulla (tehát 1/g nem konstans, azaz g nem konstans, azaz a feladat nem intézhető el primitív függvény kereséssel), és (x<sub>0</sub>, y<sub>0</sub>) olyan, hogy f(x,y)=G(y)-F(x)-C és G(y<sub>0</sub>)-F(x<sub>0</sub>)-C=0, akkor az inverzfüggvénytétel értelmében van lokális megoldása x<sub>0</sub> körül. Ilyen (x<sub>0</sub>, y<sub>0</sub>) a C alkalmas beállításával mindig alálható. (Ezt elhisszük.) Ez a kezdetiérték probléma szeparábilis esetben.
+
'''3.''' <math>y''-3y'+2y=xe^{x}\,</math>
  
Vannak olyan esetek amikor g felveszi a 0-t. Ekkor a fenti sematikus megoldáson kívül egyéb meoldás is felléphet.
+
''Mo.'' <math>\lambda^2-3\lambda+2=0\,</math>, azaz <math>\lambda_{1,2}=1;\qquad 2\,</math>. Innen
 +
:<math>y_H(x)=C_1e^{x}+C_2e^{2x}\,</math>
 +
Mivel
 +
:<math>h(x)=xe^{x}\,</math>
 +
ezért <math>a=1</math> egyszeres megoldása a karakterisztikus egyenletnek, és ezért m=1 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik (sin(0)=0), de P(x)=Ax+B elsőfokú, mert p(x)=x (hiszen cos(0)=1 és ez megmaradt), így az inhomogén egyenlet egy partikuláris megoldása az
 +
:<math>y_p(x)=x(Ax+B)e^{x}\,</math>
 +
alakban keresendő.
  
'''2. Feladat.''' Oldjuk meg az <math>y'=ay\,</math> egyenletet.
+
==Állandó együtthatós elsőrendű inhomogén lineáris differenciálegyenletrendszer==
 +
Az
 +
:<math>\dot{\mathbf{x}}(t)=\mathbf{A}\cdot\mathbf{x}(t)+\mathbf{b}(t)</math>
 +
egyenletrendszerben '''A''' konstans valós mátrix, '''b'''(t) vektorfüggvény. Csak azt az esetet vizsgáljuk, amikor '''A'''-nak vannak független sajátvektorai.
  
'''3. Feladat.''' <math>(1+x^3)dx - x^2ydy=0\,</math>
+
A homogén egyenlet megoldását az úgy nevezett mátrix alapmegoldásból állítjuk elő. Keresünk tehát olyan <math>\mathbf{\Psi}(t)</math> mátrixfüggvényt, melyre:
=== Függvényegyenletek===
+
:<math>\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)</math>
 +
Belátjuk, hogy erre az '''A''' mátrix <math>\mathbf{s}_{1,2}</math> sajátvektoraiból összerakott
 +
:<math>\mathbf{\Psi}(t)=
 +
\begin{bmatrix}
 +
& | & & |\\
 +
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 +
& | & & |
 +
\end{bmatrix}</math>
 +
mátrixfüggvény, alkalmas, ahol persze <math>\mathbf{As}_i=\lambda_i\mathbf{s}_i</math> (i=1;2). Ugyanis
 +
:<math>\dot{\mathbf{\Psi}}(t)=
 +
\begin{bmatrix}
 +
& | & & |\\
 +
\lambda_1e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & \lambda_2e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 +
& | & & |
 +
\end{bmatrix}=\begin{bmatrix}
 +
& | & & |\\
 +
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{As}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{As}_2\\
 +
& | & & |
 +
\end{bmatrix}=\mathbf{A\Psi}(t)</math>
 +
Ilyenkor pedig a megoldás tetszőleges <math>\mathbf{c}</math> konstans általános vektorral:
 +
:<math>\mathbf{x}(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}=\begin{bmatrix}
 +
& | & & |\\
 +
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 +
& | & & |
 +
\end{bmatrix}\cdot \mathbf{c}=\begin{bmatrix}c_1e^{\lambda_1 t}s_{11}+c_2e^{\lambda_2 t}s_{21}\\c_1e^{\lambda_1 t}s_{12}+c_2e^{\lambda_2 t}s_{22}\end{bmatrix}</math>
 +
Az inhomohén egy partikuláris megoldását a következőképpen keressük meg. Feltesszük az állandó variálása módszerével, hogy
 +
:<math>\mathbf{x}_p(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}(t)</math>
 +
Ezt behelyettesítve az inhomogén egyenletbe kapjuk, hogy
 +
:<math>(\mathbf{\Psi}(t)\cdot \mathbf{c}(t))^\cdot=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)</math>
 +
:<math>\dot{\mathbf{\Psi}}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)</math>
 +
De mivel tudjuk, hogy <math>\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)</math>, ezért
 +
:<math>\mathbf{A}\cdot\mathbf{\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)</math>
 +
Ezért kiejtve, amit ki lehet, csak az
 +
:<math>\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{b}(t)</math>
 +
paraméteres egyenletrendszert kell megoldani <math>\dot{\mathbf{c}}(t)</math>-re.
  
'''4. Feladat.''' Van-e nemdifferenciálható, de folytonos megoldása az <math>y^2=x^2\,</math> függvényegyenletnek?
+
===Példák===
  
'''5. Feladat.''' Hány megoldása van az |f(x)|=e<sup>x</sup> '''R'''-en? Hány diffható ebből?
+
'''4.'''  
 +
:<math>\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}2x_1 & 3x_2\\ 3x_1 & 2x_2\end{pmatrix}+\begin{pmatrix}e^t\\0\end{pmatrix}</math>
  
 +
'''Mo.'''
 +
:<math>\dot{x_1}=2x_1+3x_2+e^t</math>
 +
:<math>\dot{x_2}=3x_1+2x_2</math>
 +
Homogén:
 +
:<math>\dot{x_1}=2x_1+3x_2</math>
 +
:<math>\dot{x_2}=3x_1+2x_2</math>
 +
:<math>\begin{pmatrix}2 & 3\\3 & 2\end{pmatrix}</math> karakterisztikus polinomjának megoldásai: <math>\lambda=-1; 5
 +
</math>
 +
Sajátvektorai rendre: (1,-1), (1,1) ezekből a megoldás. Innen
 +
:<math>\Psi(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}</math>
 +
és
 +
:<math>x_H(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}=\Psi(t)\cdot\begin{pmatrix}c_1\\c_2\end{pmatrix}</math>
 +
Inhomogén:
 +
:<math>\Psi(t)\cdot c'(t)=\begin{pmatrix}e^{t}\\0\end{pmatrix}</math>
 +
Gauss--Jordan-nal:
 +
:<math>\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\-e^{-t} & e^{5t}& 0\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & 2e^{5t}& e^{t}\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim \begin{pmatrix}e^{-t} & 0 & \frac{1}{2}e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim\begin{pmatrix}1 & 0 & \frac{1}{2}e^{2t}\\0 & 1& \frac{1}{2}e^{-4t}\end{pmatrix}</math>
 +
:<math> c(t)=\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}</math>
 +
:<math> x_P(t)=\Psi(t)\cdot c(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}=\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}</math>
 +
:<math>x(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}+\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}</math>
  
===Homogén fokszámú egyenletek===
+
'''5.'''
 +
:<math>\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}5x_1 & -2x_2\\ 6x_1 & -2x_2\end{pmatrix}+\begin{pmatrix}t\\1\end{pmatrix}</math>
  
'''6. Feladat.''' (2x+y)dx + (y+x)dy =0
 
  
y/x=t (xt=y)
 
 
Ezenkívül lineáris argumentumú és lineárisok hányadosa argumentumú is van.
 
 
===Egzakt differenciálegynlet===
 
  
 +
<center>
 +
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/3. gyakorlat |3. gyakorlat]]
 +
|}
 +
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/5. gyakorlat |5. gyakorlat]]
 +
|}
 +
</center>
  
  
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]

A lap jelenlegi, 2020. április 22., 13:46-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Állandó együtthatós lineáris differenciálegyenlet

Csak a másodrendű esetet tárgyaljuk:

ay''+by'+cy=h(x)\,

ha a, b, cR.

Ilyenkor a homogén egyenlet megoldását az aλ2+bλ+c=0 karakterisztikus egyenlet megoldásából származó λ gyökökből száraztatjuk (bizonyítása a bizonyítások között).

\lambda_1\ne\lambda_2\in\mathbf{R}\, y_H(x)=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}
\lambda_1=\lambda_2=\lambda\in\mathbf{R}\, y_H(x)=C_1e^{\lambda x}+C_2xe^{\lambda x}\,
\lambda_{1,2}=\alpha\pm\beta i\in\mathbf{C}\, y_H(x)=C_1e^{\alpha x}\cos(\beta x)+C_2e^{\alpha x}\sin(\beta x)\,

Az inhomogén egyenlet megoldását a következő alakban keressük. Ha az inhomogén tag az alábbi alakban írható

h(x)=e^{ax}\left(p(x)\cos(bx)+q(x)\sin(bx)\right)

ahol p(x) és q(x) polinomok és a a+ibC szám m szeres gyöke az aλ2+bλ+c karakterisztikus polinomnak, akkor az yp(x) partikuláris megoldásra a feltevés:

y_p(x)=x^me^{ax}\left(P(x)\cos(bx)+Q(x)\sin(bx)\right)

ahol P(x) és Q(x) olyan polinomok, hogy deg P(x)=deg Q(x)= max{deg p(x), deg q(x)}.

Ha nincs külső rezonancia, akkor az alábbi "szimbolikus" táblázat súg, hogy az inhomogén tag (gerjesztés) ismeretében milyen alakban keressük a partikuláris megoldást. (Ha van külső rezonancia, akkor annyiszor szorozzuk meg x-szel ezt az értéket, hogy az már éppen lineárisan független legyen a homogén alapmegoldásoktól.)

h(x)\, y_P(x)\,
7x-8\, Ax+B\,
-x^2+\frac{1}{8}x-\sqrt{2}\, Ax^2+Bx+C\,
\frac{1}{7}e^{2x}\, Ae^{2x}\,
\sin(3x),\;\cos(3x) A\sin(3x)+B\cos(3x)\,

Rezonanciák

1. y''+9y=\sin(3x)\,

Mo. \lambda^2+9=0\,, azaz \lambda_{1,2}=\pm 3i\,. Innen

y_H(x)=C_1\cos(3x)+C_2\sin(3x)\,

Mivel

h(x)=\sin(3x)\,

ezért a + bi = 3i egyszeres megoldása a karakterisztikus egyenletnek, m=1 és az általános P(x), Q(x) polinomok konstansok: A,B, így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=Ax\cos(3x)+Bx\sin(3x)\,

alakban keresendő.

2. y''-4y'+4y=e^{2x}\,

Mo. \lambda^2-4\lambda+4=0\,, azaz \lambda_{1,2}=2\,. Innen

y_H(x)=C_1e^{2x}+C_2xe^{2x}\,

Mivel

h(x)=e^{2x}\,

ezért a = 2 kétszeres megoldása a karakterisztikus egyenletnek, és ezért m=2 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik, de P(x)=A állandó, így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=Ax^2e^{2x}\,

alakban keresendő.

3. y''-3y'+2y=xe^{x}\,

Mo. \lambda^2-3\lambda+2=0\,, azaz \lambda_{1,2}=1;\qquad 2\,. Innen

y_H(x)=C_1e^{x}+C_2e^{2x}\,

Mivel

h(x)=xe^{x}\,

ezért a = 1 egyszeres megoldása a karakterisztikus egyenletnek, és ezért m=1 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik (sin(0)=0), de P(x)=Ax+B elsőfokú, mert p(x)=x (hiszen cos(0)=1 és ez megmaradt), így az inhomogén egyenlet egy partikuláris megoldása az

y_p(x)=x(Ax+B)e^{x}\,

alakban keresendő.

Állandó együtthatós elsőrendű inhomogén lineáris differenciálegyenletrendszer

Az

\dot{\mathbf{x}}(t)=\mathbf{A}\cdot\mathbf{x}(t)+\mathbf{b}(t)

egyenletrendszerben A konstans valós mátrix, b(t) vektorfüggvény. Csak azt az esetet vizsgáljuk, amikor A-nak vannak független sajátvektorai.

A homogén egyenlet megoldását az úgy nevezett mátrix alapmegoldásból állítjuk elő. Keresünk tehát olyan \mathbf{\Psi}(t) mátrixfüggvényt, melyre:

\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)

Belátjuk, hogy erre az A mátrix \mathbf{s}_{1,2} sajátvektoraiból összerakott

\mathbf{\Psi}(t)=
\begin{bmatrix}
 & | & & |\\
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 & | & & |
\end{bmatrix}

mátrixfüggvény, alkalmas, ahol persze \mathbf{As}_i=\lambda_i\mathbf{s}_i (i=1;2). Ugyanis

\dot{\mathbf{\Psi}}(t)=
\begin{bmatrix}
 & | & & |\\
\lambda_1e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & \lambda_2e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 & | & & |
\end{bmatrix}=\begin{bmatrix}
 & | & & |\\
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{As}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{As}_2\\
 & | & & |
\end{bmatrix}=\mathbf{A\Psi}(t)

Ilyenkor pedig a megoldás tetszőleges \mathbf{c} konstans általános vektorral:

\mathbf{x}(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}=\begin{bmatrix}
 & | & & |\\
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 & | & & |
\end{bmatrix}\cdot \mathbf{c}=\begin{bmatrix}c_1e^{\lambda_1 t}s_{11}+c_2e^{\lambda_2 t}s_{21}\\c_1e^{\lambda_1 t}s_{12}+c_2e^{\lambda_2 t}s_{22}\end{bmatrix}

Az inhomohén egy partikuláris megoldását a következőképpen keressük meg. Feltesszük az állandó variálása módszerével, hogy

\mathbf{x}_p(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}(t)

Ezt behelyettesítve az inhomogén egyenletbe kapjuk, hogy

(\mathbf{\Psi}(t)\cdot \mathbf{c}(t))^\cdot=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)
\dot{\mathbf{\Psi}}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)

De mivel tudjuk, hogy \dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t), ezért

\mathbf{A}\cdot\mathbf{\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)

Ezért kiejtve, amit ki lehet, csak az

\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{b}(t)

paraméteres egyenletrendszert kell megoldani \dot{\mathbf{c}}(t)-re.

Példák

4.

\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}2x_1 & 3x_2\\ 3x_1 & 2x_2\end{pmatrix}+\begin{pmatrix}e^t\\0\end{pmatrix}

Mo.

\dot{x_1}=2x_1+3x_2+e^t
\dot{x_2}=3x_1+2x_2

Homogén:

\dot{x_1}=2x_1+3x_2
\dot{x_2}=3x_1+2x_2
\begin{pmatrix}2 & 3\\3 & 2\end{pmatrix} karakterisztikus polinomjának megoldásai: λ = − 1;5

Sajátvektorai rendre: (1,-1), (1,1) ezekből a megoldás. Innen

\Psi(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}

és

x_H(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}=\Psi(t)\cdot\begin{pmatrix}c_1\\c_2\end{pmatrix}

Inhomogén:

\Psi(t)\cdot c'(t)=\begin{pmatrix}e^{t}\\0\end{pmatrix}

Gauss--Jordan-nal:

\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\-e^{-t} & e^{5t}& 0\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & 2e^{5t}& e^{t}\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim \begin{pmatrix}e^{-t} & 0 & \frac{1}{2}e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim\begin{pmatrix}1 & 0 & \frac{1}{2}e^{2t}\\0 & 1& \frac{1}{2}e^{-4t}\end{pmatrix}
 c(t)=\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}
 x_P(t)=\Psi(t)\cdot c(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}=\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}
x(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}+\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}

5.

\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}5x_1 & -2x_2\\ 6x_1 & -2x_2\end{pmatrix}+\begin{pmatrix}t\\1\end{pmatrix}


3. gyakorlat
5. gyakorlat
Személyes eszközök