Matematika A3a 2008/4. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Rezonanciák)
 
(egy szerkesztő 34 közbeeső változata nincs mutatva)
1. sor: 1. sor:
''<sub><[[Matematika A3a 2008]]</sub>''
+
''<sub><[[Matematika A3a 2008]]</sub>''  
 +
==Állandó együtthatós lineáris differenciálegyenlet==
  
==Komplex számkör és reprezentációi==
+
Csak a másodrendű esetet tárgyaljuk:
A komplex számok '''C''' halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.
+
:<math>ay''+by'+cy=h(x)\,</math>
 +
ha ''a'', ''b'', ''c'' &isin; '''R'''.  
  
===Algebrai modell===
+
Ilyenkor a homogén egyenlet megoldását az ''a''&lambda;<sup>2</sup>+''b''&lambda;+''c''=0 karakterisztikus egyenlet megoldásából származó &lambda; gyökökből száraztatjuk (bizonyítása a bizonyítások között).
A komplex számok olyan
+
:<math>a+b\mathrm{i}\,</math>
+
alakú formális kifejezések, ahol ''a'' és ''b'' valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy
+
:<math>\mathrm{i}^2=-1\,</math>  
+
A komplex számok halmazát a '''C''' szimbólummal jelöljük, tehát
+
:<math>z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})</math>
+
itt ''a''-t a ''z'' valós részének nevezzük és Re(''z'')-vel jelöljük, ''b''-t a ''z'' képzetes részének nevezzük és Im(''z'')-vel jelöljük. Világos, hogy Im(''z'') &isin; '''R''', azaz "tiszta" valós.
+
  
'''Megjegyzés.''' A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok '''R'''[X] halmazából. Közismert, hogy a valósegyütthatós,  egyhatározatlanú polinomokal, azaz a
+
{| class="wikitable"
:<math>a_0+a_1x+a_2x^2+...+a_nx^n\,</math>
+
|-
alakú kifejezésekkel, ahol az ''a<sub>i</sub>''-k valós számok, ''n'' pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor
+
| <math>\lambda_1\ne\lambda_2\in\mathbf{R}\,</math>
:<math>\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)</math>
+
| <math>y_H(x)=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}</math>
azaz a komplex számok halmaza a valósegyütthatós polinomok x<sup>2</sup>+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll
+
|-
:<math>m(x)=a+bx\,</math>
+
| <math>\lambda_1=\lambda_2=\lambda\in\mathbf{R}\,</math>
alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az ''összeadás'' a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x<sup>2</sup>+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a 
+
| <math>y_H(x)=C_1e^{\lambda x}+C_2xe^{\lambda x}\,</math>
:<math>m(x)^2+1=0\,</math>
+
|-
polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor
+
| <math>\lambda_{1,2}=\alpha\pm\beta i\in\mathbf{C}\,</math>
:<math>m(x)^2=-1\,</math>
+
| <math>y_H(x)=C_1e^{\alpha x}\cos(\beta x)+C_2e^{\alpha x}\sin(\beta x)\,</math>
azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az ''m(x)=x'' polinom az, mely az ''i'' egység szerepét játssza és így is jelöljük ezt ezentúl.
+
|}
  
 +
Az inhomogén egyenlet megoldását a következő alakban keressük. Ha az inhomogén tag az alábbi alakban írható
 +
:<math>h(x)=e^{ax}\left(p(x)\cos(bx)+q(x)\sin(bx)\right)</math>
 +
ahol p(x) és q(x) polinomok és a ''a''+i''b'' &isin; '''C''' szám ''m'' szeres gyöke az ''a''&lambda;<sup>2</sup>+''b''&lambda;+''c'' karakterisztikus polinomnak, akkor az y<sub>p</sub>(x) partikuláris megoldásra a feltevés:
 +
:<math>y_p(x)=x^me^{ax}\left(P(x)\cos(bx)+Q(x)\sin(bx)\right)</math>
 +
ahol P(x) és Q(x) olyan polinomok, hogy deg P(x)=deg Q(x)= max{deg p(x), deg q(x)}.
  
Akárcsak a legfeljebb elsőfokú ''a'' + ''bx'' alakú polinomok esetén, a '''C'''-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az ''a'' + ''bx'' alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i<sup>2</sup>=-1 egyenlőség miatt visszaérkeznek az ''a'' + ''b''i alakú kifejezések körébe. Ezért lesz '''C''' zárt arra a szorzásra, amit a polinomok mintájára definiálunk.
+
Ha '''nincs''' külső rezonancia, akkor az alábbi "szimbolikus" táblázat súg, hogy az inhomogén tag (gerjesztés) ismeretében milyen alakban keressük a partikuláris megoldást. (Ha van külső rezonancia, akkor annyiszor szorozzuk meg ''x''-szel ezt az értéket, hogy az már éppen lineárisan független legyen a homogén alapmegoldásoktól.)
  
Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:
+
{| class="wikitable"
 +
|-
 +
! <math>h(x)\,</math>
 +
! <math>y_P(x)\,</math>
 +
|-
 +
| <math>7x-8\,</math>
 +
| <math>Ax+B\,</math>
 +
|-
 +
| <math>-x^2+\frac{1}{8}x-\sqrt{2}\,</math>
 +
| <math>Ax^2+Bx+C\,</math>
 +
|-
 +
| <math>\frac{1}{7}e^{2x}\,</math>
 +
| <math>Ae^{2x}\,</math>
 +
|-
 +
| <math>\sin(3x),\;\cos(3x)</math>
 +
| <math>A\sin(3x)+B\cos(3x)\,</math>
 +
|}
  
'''Állítás.''' A '''C''' számkör a komplex számok
+
===Rezonanciák===
:(''a''+''b''i) + (''c''+''d''i) = (''a''+''c'') + (''b''+''d'')i összeadásával és a
+
'''1.''' <math>y''+9y=\sin(3x)\,</math>
:&lambda;(''a''+''b''i) = &lambda;''a'' + &lambda;''b''i, a &lambda; valós számmal való szorzással
+
kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok '''R'''<sup>2</sup> vektorterével.
+
  
===Halmazelméleti modell===
+
''Mo.'' <math>\lambda^2+9=0\,</math>, azaz <math>\lambda_{1,2}=\pm 3i\,</math>. Innen
Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az ''a'' + ''b''i alakú formális kifejezéseken az '''R'''[X] polinomgyűrűnek az (1+X<sup>2</sup>) polinommal történő maradékos osztásának maradékait értjük).  
+
:<math>y_H(x)=C_1\cos(3x)+C_2\sin(3x)\,</math>
 +
Mivel
 +
:<math>h(x)=\sin(3x)\,</math>
 +
ezért <math>a+bi=3i</math> egyszeres megoldása a karakterisztikus egyenletnek, m=1 és az általános P(x), Q(x) polinomok konstansok: A,B, így az inhomogén egyenlet egy partikuláris megoldását az
 +
:<math>y_p(x)=Ax\cos(3x)+Bx\sin(3x)\,</math>
 +
alakban keresendő.
  
A számpár reprezentációban:
+
'''2.''' <math>y''-4y'+4y=e^{2x}\,</math>
:<math>\mathbf{C}=\mathbf{R}^{2}\,</math>
+
az összeadás az '''R'''<sup>2</sup>-beli vektorösszeadás, a szorzás, pedig a
+
:<math>(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,</math>
+
művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.
+
  
Ez az interpretáció azért fontos, mert explicitté teszi, hogy a '''C''' örökli az '''R'''<sup>2</sup> topológiáját.
+
''Mo.'' <math>\lambda^2-4\lambda+4=0\,</math>, azaz <math>\lambda_{1,2}=2\,</math>. Innen
 +
:<math>y_H(x)=C_1e^{2x}+C_2xe^{2x}\,</math>
 +
Mivel
 +
:<math>h(x)=e^{2x}\,</math>
 +
ezért <math>a=2</math> kétszeres megoldása a karakterisztikus egyenletnek, és ezért m=2 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik, de P(x)=A állandó, így az inhomogén egyenlet egy partikuláris megoldását az
 +
:<math>y_p(x)=Ax^2e^{2x}\,</math>
 +
alakban keresendő.
  
===Geometriai modell===
+
'''3.''' <math>y''-3y'+2y=xe^{x}\,</math>
  
A szorzással együtt '''C''' egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2&times;2-es valós mátrixon M<sub>2&times;2</sub> ('''R''') algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az '''R'''<sup>2</sup> síkon:
+
''Mo.'' <math>\lambda^2-3\lambda+2=0\,</math>, azaz <math>\lambda_{1,2}=1;\qquad 2\,</math>. Innen
:<math>\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
+
:<math>y_H(x)=C_1e^{x}+C_2e^{2x}\,</math>
\begin{pmatrix}
+
Mivel
r\cos\varphi  & -r\sin\varphi\\
+
:<math>h(x)=xe^{x}\,</math>
r\sin\varphi  & r\cos\varphi
+
ezért <math>a=1</math> egyszeres megoldása a karakterisztikus egyenletnek, és ezért m=1 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik (sin(0)=0), de P(x)=Ax+B elsőfokú, mert p(x)=x (hiszen cos(0)=1 és ez megmaradt), így az inhomogén egyenlet egy partikuláris megoldása az
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})</math>
+
:<math>y_p(x)=x(Ax+B)e^{x}\,</math>
Világos, hogy ekkor az ''a'' + ''b''i kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:
+
alakban keresendő.
:<math>\left\{\begin{pmatrix}
+
a  & -b\\
+
b  & \;\;a
+
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}</math>
+
Ez a mátrixhalmaz kétdimenziós altér az  M<sub>2&times;2</sub> ('''R''') algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.
+
  
=='''C''' topológiája==
+
==Állandó együtthatós elsőrendű inhomogén lineáris differenciálegyenletrendszer==
 +
Az
 +
:<math>\dot{\mathbf{x}}(t)=\mathbf{A}\cdot\mathbf{x}(t)+\mathbf{b}(t)</math>
 +
egyenletrendszerben '''A''' konstans valós mátrix, '''b'''(t) vektorfüggvény. Csak azt az esetet vizsgáljuk, amikor '''A'''-nak vannak független sajátvektorai.
  
'''R'''<sup>2</sup> gömbi környezetei lesznek '''C''' gömbi környezetei. Általában, minden topologikus fogalom '''C'''-ben '''R'''<sup>2</sup>-re vezetünk vissza. Tehát, adott ''r'' > 0 valós számra és ''z''<sub>0</sub> &isin; '''C''' számra:
+
A homogén egyenlet megoldását az úgy nevezett mátrix alapmegoldásból állítjuk elő. Keresünk tehát olyan <math>\mathbf{\Psi}(t)</math> mátrixfüggvényt, melyre:
:<math>\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}</math>
+
:<math>\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)</math>
az ''r'' sugarú ''z''<sub>0</sub> középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||<sub>2</sub> euklideszi norma, elvileg '''R'''<sup>2</sup> bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. &Omega; &sube; '''C''' '''nyílt''', ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:
+
Belátjuk, hogy erre az '''A''' mátrix <math>\mathbf{s}_{1,2}</math> sajátvektoraiból összerakott
:<math>\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega</math>
+
:<math>\mathbf{\Psi}(t)=
Egy ''A'' &sube; '''C''' halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van ''A''-ban
+
\begin{bmatrix}
:<math>\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}</math>
+
& | & & |\\
Mivel '''R'''<sup>2</sup>-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és '''R'''<sup>2</sup>-'''R'''<sup>2</sup> függvények között a következő azonosítással élhetünk. Ha ''f'': '''C'''&supe; <math>\rightarrow</math>'''C''' függvény, akkor ''z'' = ''x'' + i''y'', ''f''(''z'')=''u''(''x'',''y'')+i''v''(''x'',''y''), ill.
+
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\! & \mathbf{s}_2\\
:<math>f\equiv\begin{pmatrix}u\\v\end{pmatrix}
+
& | & & |
</math>
+
 
+
 
+
==Differenciálhatóság==
+
==='''R'''-differenciálhatóság===
+
Legyen ''f'' : '''C''' &sup;<math>\to</math> '''C''' komplex függvény. Ekkor ''f'' azonosítható az
+
:<math>f\equiv \begin{pmatrix}u\\v\end{pmatrix}:\mathbf{R}^2\supset\to\mathbf{R}^2</math>
+
vektorértékű kétváltozós függvénnyel az
+
:<math>f(z)=f(x+iy)\equiv u(x,y)+iv(x,y)\,</math>
+
szerint (itt ''u'' és ''v'' kétváltozós valós függvények, rendre az ''f'' valós és képzetes része).
+
 
+
''f'' abban az értelemen '''R'''-differenciálható, ahogy az (''u'',''v''):'''R'''<sup>2</sup> <math>\supset\to</math> '''R'''<sup>2</sup> függvény differenciálható, azaz
+
 
+
'''Definíció''' -- Valós deriválhatóság -- Legyen ''g'':'''R'''<sup>2</sup> <math>\supset\to</math> '''R'''<sup>2</sup>, ''x''<sub>0</sub>&isin;IntDom(g). Ekkor a ''g'' differenciálható az ''x''<sub>0</sub> pontban, ha létezik olyan ''A'': '''R'''<sup>2</sup> <math>\to</math> '''R'''<sup>2</sup> lineáris leképezés, melyre
+
:<math>\exists \lim_{x\to x_0}\frac{f(x)-f(x_0)-A(x-x_0)}{||x-x_0||}=0</math>
+
ahol ||.|| tetszőleges norma (például az ||.||<sub>2</sub>=|.| komplex abszolútérték) '''R'''<sup>2</sup>-ben.
+
 
+
Ekkor a fenti ''A'' lineáris leképezés egyértelmű és a jelölése: d''g''(''x''<sub>0</sub>). Azt, hogy a g valósan differenciálható (totálisan differenciálható) az ''x''<sub>0</sub>-ban, még úgy is jelöljük, hogy
+
:<math>g\in \mathrm{Diff}_{\mathbf{R}}(x_0)</math>.
+
 
+
A d''f''(''x''<sub>0</sub>,''y''<sub>0</sub>) leképezés sztenderd bázisban felírt koordinátamátrixát nevezzük Jacobi-mátrixnak, mely a következő. Ha f komponensfüggvényei: (x,y) <math>\mapsto</math> f(x,y) = (u(x,y),v(x,y)), akkor
+
:<math>\mathrm{J}^g(x_0,y_0)=[\mathrm{d}f(x_0,y_0)]=\begin{bmatrix}\partial_x u & \partial_y u \\\partial_x v & \partial_y v\end{bmatrix}(x_0,y_0) </math>
+
És persze, ha ''f'' differenciálható (értsd: totálisan differenciálhat, vagy valósan differenciálható), akkor parciálisan is deriválható, azaz a komponensfüggvényeinek az adott pontban léteznek a parciális deriváltjai, tehát felírható a Jacobi-mátrix.
+
====Példák====
+
'''1.''' Legyen ''w'' &isin; '''C''' tetszőlegesen rögzített és legyen
+
:<math>f(z)=w\cdot z</math>
+
Ekkor a komponensfüggvények (f valós és képzetes része):
+
:<math>f(z)=f(x+iy)=(w_1+iw_2)\cdot (x+iy)=w_1x-w_2y+i(w_1y+w_2x)\equiv \begin{bmatrix}
+
w_1x-w_2y\\
+
w_1y+w_2x
+
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
És a derivált:
+
mátrixfüggvény, alkalmas, ahol persze <math>\mathbf{As}_i=\lambda_i\mathbf{s}_i</math> (i=1;2). Ugyanis
:<math>\mathrm{J}^{f}(z)=\begin{bmatrix}
+
:<math>\dot{\mathbf{\Psi}}(t)=
w_1 & -w_2\\
+
\begin{bmatrix}
w_2 & w_1
+
& | & & |\\
\end{bmatrix}
+
\lambda_1e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & \lambda_2e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
</math>
+
& | & & |
Vegyük észre, hogy az imént kijött derivált éppen a ''w'' komplex szám mártixreprezentációja, hiszen általában egy ''z'' = ''a'' +' 'b''i komplex szám mátrixreprezentációja:
+
\end{bmatrix}=\begin{bmatrix}
:<math>[z]=\begin{bmatrix}
+
& | & & |\\
a & -b\\
+
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{As}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{As}_2\\
b & a
+
& | & & |
\end{bmatrix}
+
\end{bmatrix}=\mathbf{A\Psi}(t)</math>
</math>
+
Ilyenkor pedig a megoldás tetszőleges <math>\mathbf{c}</math> konstans általános vektorral:
a valós rész a főátlóban, a képzetes rész a -, + -szal a mellékátlóban van. Tehát:
+
:<math>\mathbf{x}(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}=\begin{bmatrix}
:<math>\mathrm{J}^{f}(z)\in \mathbf{C}</math>
+
& | & & |\\
'''2.'''
+
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 +
& | & & |
 +
\end{bmatrix}\cdot \mathbf{c}=\begin{bmatrix}c_1e^{\lambda_1 t}s_{11}+c_2e^{\lambda_2 t}s_{21}\\c_1e^{\lambda_1 t}s_{12}+c_2e^{\lambda_2 t}s_{22}\end{bmatrix}</math>
 +
Az inhomohén egy partikuláris megoldását a következőképpen keressük meg. Feltesszük az állandó variálása módszerével, hogy
 +
:<math>\mathbf{x}_p(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}(t)</math>
 +
Ezt behelyettesítve az inhomogén egyenletbe kapjuk, hogy
 +
:<math>(\mathbf{\Psi}(t)\cdot \mathbf{c}(t))^\cdot=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)</math>
 +
:<math>\dot{\mathbf{\Psi}}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)</math>
 +
De mivel tudjuk, hogy <math>\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)</math>, ezért
 +
:<math>\mathbf{A}\cdot\mathbf{\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)</math>
 +
Ezért kiejtve, amit ki lehet, csak az
 +
:<math>\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{b}(t)</math>
 +
paraméteres egyenletrendszert kell megoldani <math>\dot{\mathbf{c}}(t)</math>-re.
  
''f''(''z'') = ''z''<sup>2</sup>
+
===Példák===
  
Legyen ''z'' = ''x'' + i ''y''. Ekkor ''z''<sup>2</sup> = ''x''<sup>2</sup> - ''y''<sup>2</sup> +i(2''xy'')
+
'''4.'''  
:<math>\mathrm{J}_\mathbf{R}^f(x,y)=\begin{pmatrix}
+
:<math>\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}2x_1 & 3x_2\\ 3x_1 & 2x_2\end{pmatrix}+\begin{pmatrix}e^t\\0\end{pmatrix}</math>
2x & -2y\\
+
2y & 2x
+
\end{pmatrix}</math>
+
azaz amit kaptunk, pont a 2z szám mátrixreprezentációja:
+
:<math>\mathrm{J}^{f}(z)=[2z]\in\mathbf{C}
+
</math>
+
  
'''3.''' Számítsuk ki az  <math>\scriptstyle{f(z)=\overline{z}}</math> '''R'''-differenciálját!
+
'''Mo.'''
 
+
:<math>\dot{x_1}=2x_1+3x_2+e^t</math>
Ha ''z'' = ''x'' + i ''y'', akkor <math>\scriptstyle{\overline{z}=x-\mathrm{i}y}</math>, így:
+
:<math>\dot{x_2}=3x_1+2x_2</math>
:<math>\mathrm{J}^{\overline{z}}_{\mathbf{R}}(z)=\begin{pmatrix}
+
Homogén:
1 & 0\\
+
:<math>\dot{x_1}=2x_1+3x_2</math>
0 & -1
+
:<math>\dot{x_2}=3x_1+2x_2</math>
\end{pmatrix}\not\in\mathbf{C} </math>
+
:<math>\begin{pmatrix}2 & 3\\3 & 2\end{pmatrix}</math> karakterisztikus polinomjának megoldásai: <math>\lambda=-1; 5
azaz nem mátrixreprezentáció alakú a Jacobi-mátrix. Ám, azt jegyezzük meg, hogy az iménti leképezés lineáris (ez az x tengelyre vonatkozó tükrözés), tehát folytonos, sőt totálisan (végtelenszer) differenciálható és a valós deriváltja pont saját maga:
+
:<math>\mathrm{d}f(x,y)=f\,</math>
+
csak nem komplex számot reprezentál a Jacobi-mátrix.
+
 
+
=='''C'''-differenciálhatóság==
+
A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől
+
:<math>(w\cdot z)'=w\in \mathbf{C}</math>
+
:<math>(z^2)'=2z\in \mathbf{C}</math>
+
mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a
+
:<math>(\overline{z})'=(\begin{smallmatrix} 1 & 0\\0 & -1\end{smallmatrix})\notin \mathbf{C}</math>  
+
mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.
+
 
+
'''Definíció''' - ''Komplex differenciálhatóság, komplex derivált'' - Legyen ''f'' a ''z''<sub>0</sub> egy környezetében értelmezett függvény. Azt mondjuk, hogy ''f'' '''C'''-deriválható ''z''<sub>0</sub>-ban és deriváltja a ''w'' szám, ha
+
:<math>\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w</math>
+
 
+
Jelölése: <math>f'(z_0)</math>.
+
 
+
Azt, hogy az f a ''z''<sub>0</sub>-ban komplex deriválható még úgy is jelöljük, hogy
+
:<math>f\in \mathrm{Diff}_{\mathbf{C}}(z_0)</math>.
+
 
+
Pontbeli deriváltra példa a következő.
+
 
+
'''Példa.''' Milyen ''n'' egész számokra deriválható a 0-ban az alábbi függvény?
+
:<math>f(z)=\begin{cases}\overline{z}\cdot z^n, & z\ne 0\\
+
0, & z=0
+
\end{cases}
+
 
</math>
 
</math>
''Mo.'' Ha ''n''>0, akkor a különbségi hányados:
+
Sajátvektorai rendre: (1,-1), (1,1) ezekből a megoldás. Innen
:<math>\frac{\overline{z}\cdot z^n-0}{z-0}=\frac{\overline{z}\cdot z^n}{z}=\overline{z}\cdot z^{n-1}\to 0</math> ha ''z'' <math>\to</math> 0.
+
:<math>\Psi(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}</math>
Ha ''n'' = 0, akkor
+
:<math>\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=e^{i(-2\varphi)}</math>
+
aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).
+
 
+
Ha ''n'' < 0, akkor
+
:<math>\frac{\overline{z}z^n-0}{z-0}=\frac{\overline{z}}{z^{-n+1}}=\frac{\overline{z}}{z}\frac{1}{z^{-n}}</math>
+
ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.
+
 
+
Tehát ''n'' > 0-ra a függvény komplex deriválható a 0-ban, más ''n'' < 1-re nem deriválható.
+
 
+
'''Tétel.''' - ''A komplex differenciálhatóság jellemzése'' -  Legyen ''f'' a ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub>  egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:
+
:1) <math>f\in \mathrm{Diff}_{\mathbf{C}}(z_0)</math>
+
:2) <math>f\in \mathrm{Diff}_{\mathbf{R}}(x_0,y_0)</math> és <math>[\mathrm{d}f(x_0,y_0)]\in\mathbf{C}</math>.
+
 
+
''Bizonyítás.'' Legyen ''f'' a ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub>  egy környezetében értelmezett függvény és ''w' komplex szám.
+
Tekintsük a következő határértéket:
+
:<math>\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-w\cdot (z-z_0)}{|z-z_0|}=0</math>
+
Ha ez létezik, akkor ekvivalens a következővel:
+
:<math>\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right|=0</math>
+
Azaz
+
:<math>\lim\limits_{z\to z_0}\left|\frac{z-z_0}{|z-z_0|}\left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right|=0</math>
+
Itt (''z''-''z''<sub>0</sub>)/|''z''-''z''<sub>0</sub>| a komplex egységkörön "futó" függvény, ezért a fenti ekvivalnes a következővel:
+
:<math>\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-w\right|=0</math>
+
Ami viszont ugyanakkor igaz mint:
+
:<math>\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w</math>
+
Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol ''w'' a komplex derivált, akkor azt kapjuk, hogy a ''w'' mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z<sub>0</sub>)]=[w].
+
 
+
Másfelől, ha f valósan deriválható és a deriváltja a ''w'' komplex számot reprezentálja, akkor komplexen is deriválható.
+
 
+
'''Cauchy--Riemann-egyenletek''' A fenti tételben a [df(z)] &isin; '''C''' feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha ''f'' = ''u'' + i''v'' és ''z'' =  ''x'' +i''y'', akkor
+
:<math>\begin{cases}
+
\partial_xu=\partial_yv\\
+
\partial_yu=-\partial_x v
+
\end{cases}</math>
+
 
+
'''Komplex deriváltfüggvény''' Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:
+
:<math>f'(z)=\partial_x u+\mathrm{i}\partial_xv=\partial_y v+\mathrm{i}\partial_xv=\partial_xu-\mathrm{i}\partial_yu=\partial_y v-\mathrm{i}\partial_yu</math>
+
 
+
'''Definíció''' - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.
+
 
+
'''Feladat.''' Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?
+
 
+
'''Feladat.''' Legyen <math>f(x+iy)=x^2+iy^3</math>. Hol komplex deriválható és hol reguláris f?
+
 
+
 
+
 
+
===Folytonosság===
+
 
+
Azt mondjuk, hogy az ''A'' &sube; '''C''' halmazon értelmezett ''f'' függvény folytonos a ''z'' &isin; '''A''' pontban, ha ''z''-ben ''f'' folytonos mint '''R'''<sup>2</sup> &supe; ''A'' <math>\to</math> '''R'''<sup>2</sup> függvény. Maga az ''f'' ''folytonos'', ha az értelmezési tartománya minden pontjában folytonos.
+
 
+
A többváltozós valós analízisből ismert tény miatt fennáll:
+
 
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha ''f''-et a következő alakban írjuk:
+
:<math>f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)</math> 
+
ahol ''u'' és ''v'' valós értékű függvények (rendre Re(''f'') és Im(''f'')), továbbá ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub> &isin; Dom(''f''), akkor a következők ekvivalensek:
+
# ''f'' folytonos a ''z''<sub>0</sub>-ban
+
# ''u'' és ''v'' függvények folytonosak az (''x''<sub>0</sub>,''y''<sub>0</sub>)-ban 
+
 
+
 
+
A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a <math>z=x+iy</math> pontban a lim<sub>x</sub> u + i lim<sub>y</sub> v szám adja. Ekkor
+
 
+
 
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.
+
: <math>\lim\limits_{z\to z_0} f(z)=f(z_0)</math>
+
A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció '''R'''<sup>2</sup>-ben lineáris legyen, hiszen ''a véges dimenziós normált terek között ható lineáris leképezések folytonosak.'' A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.
+
 
+
 
+
'''Feladat.''' Legyen ''w'' &isin; '''C'''. Igazoljuk, hogy az alábbi függvények folytonosak!
+
# <math>z\mapsto w + z\,</math>
+
# <math>z\mapsto w\cdot z\,</math>
+
# <math>z\mapsto \overline{z}\,</math> 
+
# <math>z\mapsto \frac{1}{z}\quad\quad (z\ne 0)</math> 
+
 
+
''Megoldás.''
+
 
+
Az 1. az '''R'''<sup>2</sup>-ben eltolás a ''w''-nek megfelelő vektorral (Re(''w''), Im(''w''))-vel, így affin leképezés, ami folytonos.
+
 
+
2. a ''w'' mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.
+
 
+
3. azaz a konjugálás: (''x'',''y'') <math>\mapsto</math> (''x'',–''y'') a valós tengelyre való tükrözés, ami szintén lineáris.
+
 
+
Végül a reciprok:
+
:<math>\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}</math>
+
így, mint '''R'''<sup>2</sup> &sup;<math>\to</math> '''R'''<sup>2</sup> függvény:
+
:<math>\begin{pmatrix}
+
x \\
+
y
+
\end{pmatrix}\mapsto
+
\begin{pmatrix}
+
\cfrac{x}{x^2+y^2} \\
+
\cfrac{-y}{x^2+y^2}
+
\end{pmatrix}</math>
+
amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.
+
 
+
'''Feladat.''' Folytonos-e a ''z'' = 0-ban az
+
:<math>f(z)=\left\{
+
\begin{matrix}
+
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
+
\\
+
0,\quad\quad \mathrm{ha}\;z=0
+
\end{matrix}
+
\right.</math>
+
 
+
''Megoldás.''
+
+
Ha ''z'' = ''x'' + i''y'' és (''x'',''y'') &ne; (0,0), akkor:
+
:<math>f(x,y)=\begin{pmatrix}
+
\cfrac{y^3}{x^2+y^2} \\
+
\cfrac{x^4}{x^2+y^2}
+
\end{pmatrix}</math>
+
 
+
A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:
+
:<math>\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|</math>
+
 
és  
 
és  
:<math>\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2</math>
+
:<math>x_H(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}=\Psi(t)\cdot\begin{pmatrix}c_1\\c_2\end{pmatrix}</math>
így (x,y)<math>\to</math>(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért ''f'' a 0-ban folytonos.
+
Inhomogén:
 
+
:<math>\Psi(t)\cdot c'(t)=\begin{pmatrix}e^{t}\\0\end{pmatrix}</math>
 
+
Gauss--Jordan-nal:
Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő '''R'''<sup>2</sup>-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.
+
:<math>\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\-e^{-t} & e^{5t}& 0\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & 2e^{5t}& e^{t}\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim \begin{pmatrix}e^{-t} & 0 & \frac{1}{2}e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim\begin{pmatrix}1 & 0 & \frac{1}{2}e^{2t}\\0 & 1& \frac{1}{2}e^{-4t}\end{pmatrix}</math>
 
+
:<math> c(t)=\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}</math>
'''Állítás.''' Ha ''f'' és ''g'' komplex függvények és az ''z''<sub>0</sub>  pontban (mindketten értelmezettek és) folytonosak, akkor
+
:<math> x_P(t)=\Psi(t)\cdot c(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}=\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}</math>
# ''f'' + ''g''
+
:<math>x(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}+\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}</math>
# ''f'' <math>\cdot</math> ''g''
+
# <math>\overline{f}</math>
+
# ''g''(''z''<sub>0</sub>) &ne; 0 esetén ''f''/''g''
+
is folytonos ''z''<sub>0</sub>-ban. 
+
 
+
 
+
Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).
+
 
+
==Komplex számkör unicitása==
+
'''C''', azaz a komplex számok teste kétdimenziós valós vektortér. '''C''' elemei  reprezentálhatók az '''R'''<sup>2</sup> síkon, a következő megfeleltetésekkel:
+
:<math>\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2</math>  
+
a vektortérműveletek pedig:
+
:<math>\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2</math> vektorösszeadás (''a'', ''b'', ''c'', ''d'' &isin; '''R''')
+
:<math>\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2</math> valós számmal való szorzás (&lambda;, ''a'', ''b'' &isin; '''R''')
+
 
+
A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. '''C''' nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt '''C''' ''az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra'' -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).
+
 
+
A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa
+
:<math>\begin{pmatrix}  
+
a & -b\\
+
b & a
+
\end{pmatrix}</math>
+
A komplex számok szorzása itt a mátrixszorzás.
+
+
==Komplex sorozatok==
+
Minthogy '''C''' &equiv; '''R'''<sup>2</sup> (mint normált vektortér), a komplex sorozatok azon tulajdonságai, melyek a vektortérműveletekkel és az | . | &equiv; || . ||<sub>2</sub> euklideszi normával kapcsolatosak mind '''R'''<sup>2</sup>-ből ismertnek tekinthetők. A sorozatok konvergenciáját ugyanúgy definiáljuk, mint  '''R'''<sup>2</sup>-ben:
+
:<math>
+
\begin{matrix}
+
(z_n)\in\mathbf{C}^{\mathbf{Z}^+}\mbox{ konvergens }\\
+
\\
+
\Updownarrow\mathrm{def}\\
+
\\
+
\exists z\in \mathbf{C}\quad \forall \varepsilon\in\mathbf{R}^+\quad \exists N\in \mathbf{Z}^+\quad \forall n\in\mathbf{Z}^+ \quad(n> N\;\Rightarrow\;|z_n-z|<\varepsilon)
+
\end{matrix}</math>
+
Ekkor a fenti ''z'' egyértelmű, és ez a sorozat határértéke (lim(''z''<sub>n</sub>))
+
 
+
A legfontosabb jellemzése tehát a konvergenciának az '''R'''<sup>2</sup>-ből kölcsönzött, a komponensekre vonatkozó kritérium:
+
 
+
'''Tétel''' – A '''C'''-beli (''z''<sub>n</sub>) = (''a''<sub>n</sub> + i''b''<sub>n</sub>) sorozat konvergens akkor és csak akkor, ha
+
:(''a''<sub>n</sub>) konvergens és
+
:(''b''<sub>n</sub>) konvergens.
+
 
+
Ekkor lim(''z''<sub>n</sub>) = lim(''a''<sub>n</sub>) + i<math>\cdot</math>lim(''b''<sub>n</sub>)
+
 
+
Fontos látni a kapcsolatot a sorozathatárék és a függvényhatárérték között. Egy (''&zeta;''<sub>n</sub>) komplex sorozat nem más, mint egy
+
:<math>\zeta: \mathbf{Z}^+\to \mathbf{C}</math>
+
függvény. Ha '''Z'''<sup></sup>-t komplex részhalmaznak gondoljuk (ahogy az is), akkor az egyetlen torlódási pontja a &infin;. Ezért egy sorozatnak pontosan akkor létezik határértéke és ez a w szám, ha mint függvénynek létezik határértéke és az a w. Azaz:
+
:<math>\exists\lim\limits_{n\to \infty}z_n=w\in\overline{\mathbf{C}}\quad\Longleftrightarrow\quad\exists\lim\limits_{\infty}\zeta=w\in\overline{\mathbf{C}}</math>
+
Ebből következik, hogy a függvényhatárértékre vonatkozó minden műveleti szabály öröklődik a sorozathatárértékre.
+
===Nullsorozatok===
+
 
+
A 0 komplex számhoz tartó sorozatok nullsorozatok. Az abszolútérték és a szorzás jó tulajdonságai miatt öröklődnek a valós sorozatok alábbi tulajdonságai.
+
 
+
'''Állítás''' – Legyen (''z''<sub>n</sub>) komplex számsorozat.
+
# ''abszolútérték:'' ''z''<sub>n</sub> <math>\to</math> 0 akkor és csak akkor, ha |''z''<sub>n</sub>| <math>\to</math> 0
+
# ''eltolás:'' ''z''<sub>n</sub> <math>\to</math> ''z'' akkor és csak akkor, ha (''z''<sub>n</sub> – ''z'') <math>\to</math> 0
+
# ''"K <math> \cdot</math> 0":'' ha (''w''<sub>n</sub>) korlátos és ''z''<sub>n</sub> <math>\to</math> 0, akkor  (''w''<sub>n</sub> <math>\cdot</math> ''z''<sub>n</sub>) <math>\to</math> 0
+
# ''majoráns:'' ha (&delta;<sub>n</sub>) <math>\to</math> 0 valós és |''z''<sub>n</sub>| < &delta;<sub>n</sub>, akkor ''z''<sub>n</sub> <math>\to</math> 0
+
# ''hányadoskritérium:'' ha <math>\limsup\left|\frac{z_{n+1}}{z_n}\right|<1\,</math>, akkor  ''z''<sub>n</sub> <math>\to</math> 0
+
# ''gyökkritérium:'' ha <math>\limsup\sqrt[n]{|z_n|}<1\,</math>, akkor  ''z''<sub>n</sub> <math>\to</math> 0
+
 
+
 
+
Ezek közül '''C'''-ben a legjellegzetesebb a ''"K <math> \cdot</math> 0"'', hiszen ez azt állítja, hogy nem csak a &lambda;<sub>n</sub>.''z''<sub>n</sub> skalárral történő szorzás esetén igaz a "korlátos - nullához" tartó kritérium (mindkét változóban), hanem komplex szorzás is ilyen.
+
 
+
 
+
'''1. Feladat'''
+
:<math>\left(\frac{\sqrt{2}+i}{\sqrt{3n}}\right)^n\to ?</math>
+
 
+
''(Útmutatás: hivatkozzunk a "korlátos szor nullához tartó" kritériumra.)''
+
+
:<math>\left(\frac{\sqrt{2}+i}{\sqrt{3n}}\right)^n=\left(\frac{\sqrt{2}+i}{\sqrt{3}}\right)^n\frac{1}{\sqrt{n^n}}</math>
+
 
+
'''2. Feladat.'''
+
:<math>\frac{\sqrt[n]{n^3+2n}}{i+1}\to ?</math>
+
ahol az ''n''-edik gyök a valós számból vont valós gyök.
+
 
+
''(Útmutatás: "i-telenítsük" a nevezőt.)''
+
 
+
:<math>\frac{\sqrt[n]{n^3+2n}}{i+1}=\frac{(i-1)\sqrt[n]{n^3+2n}}{-1-1}=\frac{i\sqrt[n]{n^3+2n}-\sqrt[n]{n^3+2n}}{-2}\to \frac{1}{2}-\frac{1}{2}i</math>
+
ugyanis
+
: <math>1\leftarrow\sqrt[n]{n}^3=\sqrt[n]{n^3}\leq\sqrt[n]{n^3+2n}\leq\sqrt[n]{n^3+\frac{n^3}{2}}=\sqrt[n]{\frac{3}{2}n^3}=\sqrt[n]{\frac{3}{2}}\sqrt[n]{n}^3\to 1</math>
+
 
+
 
+
'''3. Feladat.'''
+
:<math>\left(\frac{n+i}{n}\right)^n\to ?</math>
+
 
+
''(Útmutatás: használjunk trigonometrikus alakot és hatványozzunk.)''
+
 
+
:<math>\left(\frac{n+i}{n}\right)^n=\left(\sqrt{1+\frac{1}{n^2}}\right)^n\cdot\left(\cos\left(n\,\mathrm{arc\,tg}\left(\frac{1}{n}\right)\right)+i\sin\left(n\,\mathrm{arc\,tg}\left(\frac{1}{n}\right)\right)\right)\to </math>
+
:: <math>\to \cos1+i\sin 1\,</math>
+
Mert a szögfüggvények argumentumában lévő sorozat az 1-hez tart (pl L'Hospital-szabállyal majd átviteli elvvel ellenőrizhető), a első szorzó pedig az 1-ehez tart (rendőrelvvel). Az argumentumokban lévő értéket tertmészetesen radiánban kell venni: nem 1˚, hanem 1 rad.
+
 
+
==Komplex sorok==
+
 
+
Minden normált térben definiálhatók sorok és ezek konvergenciája, így '''C'''-ben is. Az (''z''<sub>n</sub>) sorozat
+
: <math>s_n=\sum\limits_{k=1}^n z_k</math>
+
részletösszegeinek (''s''<sub>n</sub>) sorozatát a (''z''<sub>n</sub>) -ből képzett '''sor'''nak nevezzük és &sum;(''z''<sub>n</sub>)-nel jelöljük. Azt mondjuk, hogy a &sum;(''z''<sub>n</sub>) sor konvergens és összege a ''w'' komplex szám, ha (''z''<sub>n</sub>) részletösszegeinek sorozata konvergens és határértéke ''w''. Ekkor az összeget a 
+
:<math>\sum\limits_{n=1}^{\infty}z_n</math>
+
szimbólummal jelöljük.
+
 
+
===Komponensek===
+
 
+
Az egyik módja, hogy a komplex sorok konvergenciáját visszavezessük a valósokra, ha a komponenssorozatokat vesszük:
+
:<math>\sum(z_n)=\sum(x_n+iy_n)\,  </math>
+
esetén az összegeket elképzelve, azokból az i kiemelhető, így
+
:<math>\sum(z_n)=\sum(x_n)+i\sum(y_n)\,  </math> 
+
ahol az összeget és a szorzást tagonként végezzük. Ekkor egy sor ponrosan akkor konvergens, ha mindkét komponense konvergens.
+
 
+
===Cauchy-kritérium és abszolút konvergencia===
+
 
+
Világos, hogy egy sor, mint részletösszegsorozat pontosan akkor konvergens, ha Cauchy-sorozat. Ez a Cauchy-kritérium sorokra.
+
 
+
Létezik az abszolút konvergencia fogalmai is. Egy sor abszolút konvergens, ha a tagjai abszolútértékéből képezett sorozat konvergens. Igaz az, hogy egy normált tér akkor és csak akkor teljes, ha minden abszolút konvergens sor konvergens benne. (És '''C''' teljes, mert minden Cauchy-sorozat konvergál benne, ami pont annak a módja, hogy belássuk az előbbi kritériumot.) Persze az előfordul a teljes terekben is, hogy konvergens sorozatok nem lesznek abszolút konvergensek.
+
 
+
===Kritériumok az abszolút konvergenciára===
+
 
+
Az abszolút konvergencia fenti kritériumából egy sor komplex sorokra vonatkozó kritérium adódik a valósból.
+
 
+
'''Tétel''' – Legyen (''z''<sub>n</sub>) komplex számsorozat.
+
# '''Szükséges kritérium:''' Ha  &sum;(''z''<sub>n</sub>) konvergens, akkor (''z''<sub>n</sub>) nulsorozat.
+
# '''Geometriai sor:''' ha |''z''| < 1, akkor <math>\sum\limits_{(0)} (z^n)</math> konvergens és az összege:
+
#:<math>\sum\limits_{n=0}^\infty z^n=\frac{1}{1-z}</math>
+
# '''Összehasonlító kritérium:'''  ha az &sum;(''r''<sub>n</sub>) valós sor konvergens és |''z''<sub>n</sub>| ≤ ''r''<sub>n</sub> majdnem minden ''n''-re, akkor  &sum;(''z''<sub>n</sub>) abszolút konvergens (''majoráns-kritérium''). Ha az &sum;(''r''<sub>n</sub>) pozitív valós sor divergens és  ''r''<sub>n</sub> ≤ |''z''<sub>n</sub>| m.m., akkor &sum;(''z''<sub>n</sub>) divergens (''minoráns-kritérium'').
+
# '''p-edik hatvány próba:''' ha ''p'' > 1  valós, akkor a <math>(\sum\limits_{1}\frac{1}{n^p})</math> valós sor konvergens.
+
#: Ha 0 ≤ ''p'' ≤ 1, akkor a <math>(\sum\limits_{1}\frac{1}{n^p})</math> valós sor divergens.
+
# '''Hányadoskritérium:''' ha <math>\limsup\left|\frac{z_{n+1}}{z_n}\right|<1\,</math>, akkor &sum;(''z''<sub>n</sub>) abszolút konvergens. Ha a "liminf" > 1, akkor divergens
+
# '''Gyökkritérium:''' ha <math>\limsup\sqrt[n]{|z_n|}<1\,</math>, akkor  &sum;(''z''<sub>n</sub>) abszolút konvergens. Ha a "limsup" > 1, akkor divergens.
+
 
+
 
+
'''Megjegyezzük,''' hogy ha a gyökök és hányadosok sorozata konvergál, akkor ugyanahhoz a számhoz konvergálnak.
+
 
+
 
+
'''4.'''
+
Konvergens-e illetve abszolút konvergens-e?
+
:<math>\sum\left(\frac{i^n}{n}\right)</math>
+
  
 
'''5.'''  
 
'''5.'''  
#Konvergens-e és mi a határértéke: <math>\frac{n!}{n^n}i^n</math>
+
:<math>\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}5x_1 & -2x_2\\ 6x_1 & -2x_2\end{pmatrix}+\begin{pmatrix}t\\1\end{pmatrix}</math>
#Konvergens-e <math>\sum\left(\frac{n!}{n^n}i^n\right)</math>
+
#Milyen ''z''-re konvergens: <math>\sum\left(\frac{n!}{n^n}z^n\right)</math>
+
 
+
''(Útmutatás: használjuk a hányadoskritériumot, vagy vizsgáljuk, hogy milyen rendben tartanak a végtelenhez az összetevősorozatok.)''
+
 
+
:<math>\frac{\left|\frac{(n+1)!}{(n+1)^{n+1}}i^{n+1}\right|}{\left|\frac{n!}{n^n}i^n\right|}=\frac{n+1}{\left(1+\frac{1}{n}\right)^n\cdot(n+1)}\to\frac{1}{e}<1 </math>
+
azaz 0-hoz tart-
+
 
+
 
+
'''6.'''
+
#Konvergens-e és mi a határértéke: <math>\frac{1}{\left(1+\frac{i}{n}\right)^{n^4}}</math>
+
#Konvergens-e <math>\sum\left(\frac{1}{\left(1+\frac{i}{n}\right)^{n^4}}\right)</math>
+
#Milyen ''z''-re konvergens:<math>\sum\left(\frac{1}{\left(1+\frac{i|z|}{n}\right)^{n^4}}\right)</math>
+
 
+
''(Útmutatás: használjuk a gyökkritériumot.)''
+
 
+
:<math>\sqrt[n]{\left|1+\frac{i}{n}\right|^{n^4}}=\left|1+\frac{i}{n}\right|^{n^3}=\left(\sqrt{\left(1+\frac{1}{n^2}\right)^{n^2}}\right)^n\geq (1+\varepsilon)^n\to +\infty</math>
+
Így a reciproka a 0-hoz tart, azaz a limszup < 1.
+
 
+
==Komplex hatványsorok==
+
 
+
'''Definíció''' – ''Hatványsor'' – Legyen (''a''<sub>n</sub>) komplex számsorozat és ''z''<sub>0</sub> &isin; '''C'''. Ekkor az  &sum;(''a''<sub>n(</sub>id<sub>'''C'''</sub>-z<sub>0</sub>)<sup>n</sup>) függvénysort hatványsornak nevezzük és összegét, az
+
:<math>z\mapsto \sum\limits_{n=0}^\infty a_n(z-z_0)^n</math>
+
hozzárendelési utasítással értelmezett, a {''z'' &isin; | &sum;(''a''<sub>n</sub>(z-''z''<sub>0</sub>)<sup>n</sup>) konvergál } halmazon értelmezett függvényt a hatványsor '''összegének''' nevezzük. Középpontja ''z''<sub>0</sub>, együtthatósorozata (''a''<sub>n</sub>).
+
 
+
A továbbiakban csak a  &sum;(''a''<sub>n</sub>z<sup>n</sup>) alakú, azaz a 0 körüli hatványsorokkal foglalkozunk (ezzel nem csorbítjuk az általánosságot, mert eltolással megkaphatjuk a többit is).
+
 
+
'''Tétel''' – ''Cauchy–Hadamard-tétel'' – Ha (''a''<sub>n</sub>) komplex számsorozat, <math>c= \limsup\limits_{n}\sqrt[n]{|a_n|}</math> és
+
:<math>R=\left\{
+
\begin{matrix}
+
0,& \mathrm{ha} &c=+\infty\\
+
+\infty,& \mathrm{ha} & c=0\\
+
\frac{1}{c},& \mathrm{ha} & 0<c<+\infty
+
\end{matrix}
+
 
+
\right.</math>
+
akkor  &sum;(''a''<sub>n</sub>z<sup>n</sup>) abszolút konvergens a B<sub>R</sub>(0) gömbön és divergens a  B<sub>1/R</sub>(&infin;) gömbön.
+
 
+
A tétel minden részletre kiterjedő bizonyítását nem végezzük el, csak utalunk rá, hogy nyilvánvaló, hogy a Cauchy-féle gyökkritériumot kell benne használni. A tételbeli ''R'' sugarat a hatványsor ''konvergenciasugarának'' nevezzük. ''R''-et másként is kiszámíthajuk. Ha azt tudjuk, a hányadoskritérium alapján, hogy 
+
:<math>\exists\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|}</math>
+
akkor létezik és ezzel egyenlő az n-edik gyökök sorozata is: 
+
:<math>\exists\lim\limits_{n\to \infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|}=\,''\,\frac{1}{R}\,''</math>
+
ahol az idézőjel azt jelzi, hogy a konvergenciasugár lehet végtelen vagy 0 is.
+
 
+
 
+
'''7. Feladat.''' Mi az alábbi hatványsorok konvergenciaköre és -sugara?
+
#<math>\sum\left((2i)^nn^3(z-i)^n\right)</math>
+
#<math>\sum\left(\mathrm{arc\,sin}\left(\frac{1}{n}\right)(z+1+i)^n\right)</math>
+
#<math>\sum\left(\frac{in^{2008}}{n!}z^n\right)</math>
+
 
+
 
+
'''Analitikus'''nak nevezünk egy ''f'' komplex függvényt, a ''z''<sub>0</sub> pontban, ha van olyan &delta; sugarú környezet és &sum;(''a''<sub>n</sub>(z-z<sub>0</sub>)<sup>n</sup>) hatványsor, hogy minden ''z'' &isin; B<sub>&delta;</sub>(''z''<sub>0</sub>)-ra ''f'' érelmezett, &sum;(''a''<sub>n</sub>(z-z<sub>0</sub>)<sup>n</sup>) konvergens és
+
:<math>f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n</math>
+
Ezt úgy jelöljük, hogy ''f'' &isin; C<sup>&omega;</sup>(''z''<sub>0</sub>).
+
 
+
'''8. Feladat'''
+
# Van-e olyan <math>\sum\limits_{(0)}(a_n(z-2))</math> hatványsor, mely konvergál a 0-ban, de divergál a 3-ban. Konvergál 2-ben, de divergál az 2,000001-ben?
+
# Igazoljuk, hogy az alábbi függvény analitikus a nullában. Mi sorfejtés a konvergenciaköre?
+
#:<math>f(z) = \frac{1}{4+z^2} \,</math>
+
 
+
===Hatványsorok összegfüggvényének folytonossága és differenciálhatósága===
+
 
+
'''Tétel''' – Ha (''a''<sub>n</sub>) komplex számsorozat, akkor az  &sum;(''a''<sub>n</sub>z<sup>n</sup>) hatványsor összegfüggvénye folytonos a konvergenciakör belsejében. Sőt, reguláris is ott.
+
  
Emlékeztetünk arra, hogy egy függvény reguláris egy pontban, ha a pont egy környezetében mindenütt értelmezett és komplex deriválható. A tétel szerint tehát analitikus függvény reguláris. A döbbenetes azonban, hogymint később kiderül: reguláris függvény analitikus: ''f'' &isin; C<sup>&omega;</sup>(''z''<sub>0</sub>) akkor és csak akkr, ha ''f'' &isin; Reg(''z''<sub>0</sub>).
 
  
''Bizonyítás.'' Legyen ''z'' a konvergenciakör egy belső pontja és &Delta;''z'' olyan, hogy még ''z'' + &Delta;''z'' is a konvergenciakör belsejébe esik. Ekkor:
 
: <math>\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n=
 
\sum\limits_{n=0}^{\infty}a_n((z+\Delta z)^n-z^n)=</math>
 
mert mindkét sor konvergens, ekkor algebrai azonosságokkal:
 
:<math>=\Delta z\sum\limits_{n=0}^{\infty}a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}</math>
 
vagy ha tetszik nemnulla &Delta;''z''-vel:
 
:<math>\frac{\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n}{\Delta z}=\sum\limits_{n=0}^{\infty}a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}</math>
 
a jobb oldalon álló sor konvergenciáját a gyökkritériummal láthatjuk be:
 
:<math>\left|a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}\right|\leq|a_n|\cdot n r^n</math>
 
ahol r olyan pozitív szám, hogy | ''z'' + &Delta;''z'' | < r < R (ez  utóbbi a hatványsor konvergenciasugára). És
 
:<math>\limsup\limits_{n\to \infty}\sqrt[n]{|a_n|\cdot n r^n}=\limsup\limits_{n\to \infty}\sqrt[n]{|a_n|}\cdot 1 \cdot r\leq\frac{1}{R}r<1\,</math>
 
Így azt kaptuk, hogy minden olyan  &Delta;''z''-re, melyre | ''z'' + &Delta;''z'' | < r, teljesül és |&Delta;''z''| <&epsilon;/(1+&sum;<sub>n</sub>|a<sub>n</sub>|nr<sup>n</sup>)=:&delta;
 
:<math>\left|\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n\right|\leq|\Delta z|\cdot \sum\limits_{n=0}^\infty|a_n|nr^n<\varepsilon.</math>
 
  
Hosszadalmasabb számolásokkal, de lényegében ugyanígy kimutatható, hogy a hatványsor összegfüggvénye komplex differenciálható is a konvergenciakör belsejében és deriváltja a formális tagonkénti deriválásal kapott sor összegfüggvényével egyenlő, tehát:
+
<center>
:<math>\left(\sum\limits_{n=0}^{\infty}a_nz^n\right)'=\sum\limits_{n=1}^{\infty}a_n n z^{n-1}</math>
+
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/3. gyakorlat |3. gyakorlat]]
 +
|}
 +
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/5. gyakorlat |5. gyakorlat]]
 +
|}
 +
</center>
  
  
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]

A lap jelenlegi, 2020. április 22., 13:46-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Állandó együtthatós lineáris differenciálegyenlet

Csak a másodrendű esetet tárgyaljuk:

ay''+by'+cy=h(x)\,

ha a, b, cR.

Ilyenkor a homogén egyenlet megoldását az aλ2+bλ+c=0 karakterisztikus egyenlet megoldásából származó λ gyökökből száraztatjuk (bizonyítása a bizonyítások között).

\lambda_1\ne\lambda_2\in\mathbf{R}\, y_H(x)=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}
\lambda_1=\lambda_2=\lambda\in\mathbf{R}\, y_H(x)=C_1e^{\lambda x}+C_2xe^{\lambda x}\,
\lambda_{1,2}=\alpha\pm\beta i\in\mathbf{C}\, y_H(x)=C_1e^{\alpha x}\cos(\beta x)+C_2e^{\alpha x}\sin(\beta x)\,

Az inhomogén egyenlet megoldását a következő alakban keressük. Ha az inhomogén tag az alábbi alakban írható

h(x)=e^{ax}\left(p(x)\cos(bx)+q(x)\sin(bx)\right)

ahol p(x) és q(x) polinomok és a a+ibC szám m szeres gyöke az aλ2+bλ+c karakterisztikus polinomnak, akkor az yp(x) partikuláris megoldásra a feltevés:

y_p(x)=x^me^{ax}\left(P(x)\cos(bx)+Q(x)\sin(bx)\right)

ahol P(x) és Q(x) olyan polinomok, hogy deg P(x)=deg Q(x)= max{deg p(x), deg q(x)}.

Ha nincs külső rezonancia, akkor az alábbi "szimbolikus" táblázat súg, hogy az inhomogén tag (gerjesztés) ismeretében milyen alakban keressük a partikuláris megoldást. (Ha van külső rezonancia, akkor annyiszor szorozzuk meg x-szel ezt az értéket, hogy az már éppen lineárisan független legyen a homogén alapmegoldásoktól.)

h(x)\, y_P(x)\,
7x-8\, Ax+B\,
-x^2+\frac{1}{8}x-\sqrt{2}\, Ax^2+Bx+C\,
\frac{1}{7}e^{2x}\, Ae^{2x}\,
\sin(3x),\;\cos(3x) A\sin(3x)+B\cos(3x)\,

Rezonanciák

1. y''+9y=\sin(3x)\,

Mo. \lambda^2+9=0\,, azaz \lambda_{1,2}=\pm 3i\,. Innen

y_H(x)=C_1\cos(3x)+C_2\sin(3x)\,

Mivel

h(x)=\sin(3x)\,

ezért a + bi = 3i egyszeres megoldása a karakterisztikus egyenletnek, m=1 és az általános P(x), Q(x) polinomok konstansok: A,B, így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=Ax\cos(3x)+Bx\sin(3x)\,

alakban keresendő.

2. y''-4y'+4y=e^{2x}\,

Mo. \lambda^2-4\lambda+4=0\,, azaz \lambda_{1,2}=2\,. Innen

y_H(x)=C_1e^{2x}+C_2xe^{2x}\,

Mivel

h(x)=e^{2x}\,

ezért a = 2 kétszeres megoldása a karakterisztikus egyenletnek, és ezért m=2 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik, de P(x)=A állandó, így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=Ax^2e^{2x}\,

alakban keresendő.

3. y''-3y'+2y=xe^{x}\,

Mo. \lambda^2-3\lambda+2=0\,, azaz \lambda_{1,2}=1;\qquad 2\,. Innen

y_H(x)=C_1e^{x}+C_2e^{2x}\,

Mivel

h(x)=xe^{x}\,

ezért a = 1 egyszeres megoldása a karakterisztikus egyenletnek, és ezért m=1 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik (sin(0)=0), de P(x)=Ax+B elsőfokú, mert p(x)=x (hiszen cos(0)=1 és ez megmaradt), így az inhomogén egyenlet egy partikuláris megoldása az

y_p(x)=x(Ax+B)e^{x}\,

alakban keresendő.

Állandó együtthatós elsőrendű inhomogén lineáris differenciálegyenletrendszer

Az

\dot{\mathbf{x}}(t)=\mathbf{A}\cdot\mathbf{x}(t)+\mathbf{b}(t)

egyenletrendszerben A konstans valós mátrix, b(t) vektorfüggvény. Csak azt az esetet vizsgáljuk, amikor A-nak vannak független sajátvektorai.

A homogén egyenlet megoldását az úgy nevezett mátrix alapmegoldásból állítjuk elő. Keresünk tehát olyan \mathbf{\Psi}(t) mátrixfüggvényt, melyre:

\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)

Belátjuk, hogy erre az A mátrix \mathbf{s}_{1,2} sajátvektoraiból összerakott

\mathbf{\Psi}(t)=
\begin{bmatrix}
 & | & & |\\
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 & | & & |
\end{bmatrix}

mátrixfüggvény, alkalmas, ahol persze \mathbf{As}_i=\lambda_i\mathbf{s}_i (i=1;2). Ugyanis

\dot{\mathbf{\Psi}}(t)=
\begin{bmatrix}
 & | & & |\\
\lambda_1e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & \lambda_2e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 & | & & |
\end{bmatrix}=\begin{bmatrix}
 & | & & |\\
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{As}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{As}_2\\
 & | & & |
\end{bmatrix}=\mathbf{A\Psi}(t)

Ilyenkor pedig a megoldás tetszőleges \mathbf{c} konstans általános vektorral:

\mathbf{x}(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}=\begin{bmatrix}
 & | & & |\\
e^{\lambda_1 t}\cdot\!\!\!\!\!  & \mathbf{s}_1 & e^{\lambda_2 t}\cdot\!\!\!\!\!  & \mathbf{s}_2\\
 & | & & |
\end{bmatrix}\cdot \mathbf{c}=\begin{bmatrix}c_1e^{\lambda_1 t}s_{11}+c_2e^{\lambda_2 t}s_{21}\\c_1e^{\lambda_1 t}s_{12}+c_2e^{\lambda_2 t}s_{22}\end{bmatrix}

Az inhomohén egy partikuláris megoldását a következőképpen keressük meg. Feltesszük az állandó variálása módszerével, hogy

\mathbf{x}_p(t)=\mathbf{\Psi}(t)\cdot \mathbf{c}(t)

Ezt behelyettesítve az inhomogén egyenletbe kapjuk, hogy

(\mathbf{\Psi}(t)\cdot \mathbf{c}(t))^\cdot=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)
\dot{\mathbf{\Psi}}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)

De mivel tudjuk, hogy \dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t), ezért

\mathbf{A}\cdot\mathbf{\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{A\Psi}(t)\cdot \mathbf{c}(t)+\mathbf{b}(t)

Ezért kiejtve, amit ki lehet, csak az

\mathbf{\Psi}(t)\cdot \dot{\mathbf{c}}(t)=\mathbf{b}(t)

paraméteres egyenletrendszert kell megoldani \dot{\mathbf{c}}(t)-re.

Példák

4.

\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}2x_1 & 3x_2\\ 3x_1 & 2x_2\end{pmatrix}+\begin{pmatrix}e^t\\0\end{pmatrix}

Mo.

\dot{x_1}=2x_1+3x_2+e^t
\dot{x_2}=3x_1+2x_2

Homogén:

\dot{x_1}=2x_1+3x_2
\dot{x_2}=3x_1+2x_2
\begin{pmatrix}2 & 3\\3 & 2\end{pmatrix} karakterisztikus polinomjának megoldásai: λ = − 1;5

Sajátvektorai rendre: (1,-1), (1,1) ezekből a megoldás. Innen

\Psi(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}

és

x_H(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}=\Psi(t)\cdot\begin{pmatrix}c_1\\c_2\end{pmatrix}

Inhomogén:

\Psi(t)\cdot c'(t)=\begin{pmatrix}e^{t}\\0\end{pmatrix}

Gauss--Jordan-nal:

\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\-e^{-t} & e^{5t}& 0\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & 2e^{5t}& e^{t}\end{pmatrix}\sim\begin{pmatrix}e^{-t} & e^{5t}& e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim \begin{pmatrix}e^{-t} & 0 & \frac{1}{2}e^{t}\\0 & e^{5t}& \frac{1}{2}e^{t}\end{pmatrix}\sim\begin{pmatrix}1 & 0 & \frac{1}{2}e^{2t}\\0 & 1& \frac{1}{2}e^{-4t}\end{pmatrix}
 c(t)=\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}
 x_P(t)=\Psi(t)\cdot c(t)=\begin{pmatrix}e^{-t} & e^{5t}\\-e^{-t} & e^{5t}\end{pmatrix}\begin{pmatrix}\frac{1}{4}e^{2t}\\ -\frac{1}{8}e^{-4t}\end{pmatrix}=\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}
x(t)=c_1\begin{pmatrix}e^{-t}\\-e^{-t}\end{pmatrix}+c_2\begin{pmatrix}e^{5t}\\e^{5t}\end{pmatrix}+\begin{pmatrix}\frac{1}{8}e^{t}\\ -\frac{3}{8}e^{t}\end{pmatrix}

5.

\begin{pmatrix}\dot{x}_1\\\dot{x}_2\end{pmatrix}=\begin{pmatrix}5x_1 & -2x_2\\ 6x_1 & -2x_2\end{pmatrix}+\begin{pmatrix}t\\1\end{pmatrix}


3. gyakorlat
5. gyakorlat
Személyes eszközök