Matematika A3a 2008/4. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Homogén fokszámú egyenletek)
1. sor: 1. sor:
 
''<sub><[[Matematika A3a 2008]]</sub>''  
 
''<sub><[[Matematika A3a 2008]]</sub>''  
 +
 +
 +
==Komplex számkör és reprezentációi==
 +
A komplex számok '''C''' halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.
 +
 +
===Algebrai modell===
 +
A komplex számok olyan
 +
:<math>a+b\mathrm{i}\,</math>
 +
alakú formális kifejezések, ahol ''a'' és ''b'' valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy
 +
:<math>\mathrm{i}^2=-1\,</math>
 +
A komplex számok halmazát a '''C''' szimbólummal jelöljük, tehát
 +
:<math>z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})</math>
 +
itt ''a''-t a ''z'' valós részének nevezzük és Re(''z'')-vel jelöljük, ''b''-t a ''z'' képzetes részének nevezzük és Im(''z'')-vel jelöljük. Világos, hogy Im(''z'') &isin; '''R''', azaz "tiszta" valós.
 +
 +
'''Megjegyzés.''' A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok '''R'''[X] halmazából. Közismert, hogy a valósegyütthatós,  egyhatározatlanú polinomokal, azaz a
 +
:<math>a_0+a_1x+a_2x^2+...+a_nx^n\,</math>
 +
alakú kifejezésekkel, ahol az ''a<sub>i</sub>''-k valós számok, ''n'' pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor
 +
:<math>\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)</math>
 +
azaz a komplex számok halmaza a valósegyütthatós polinomok x<sup>2</sup>+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll
 +
:<math>m(x)=a+bx\,</math>
 +
alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az ''összeadás'' a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x<sup>2</sup>+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a 
 +
:<math>m(x)^2+1=0\,</math>
 +
polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor
 +
:<math>m(x)^2=-1\,</math>
 +
azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az ''m(x)=x'' polinom az, mely az ''i'' egység szerepét játssza és így is jelöljük ezt ezentúl.
 +
 +
 +
Akárcsak a legfeljebb elsőfokú ''a'' + ''bx'' alakú polinomok esetén, a '''C'''-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az ''a'' + ''bx'' alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i<sup>2</sup>=-1 egyenlőség miatt visszaérkeznek az ''a'' + ''b''i alakú kifejezések körébe. Ezért lesz '''C''' zárt arra a szorzásra, amit a polinomok mintájára definiálunk.
 +
 +
Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:
 +
 +
'''Állítás.''' A '''C''' számkör a komplex számok
 +
:(''a''+''b''i) + (''c''+''d''i) = (''a''+''c'') + (''b''+''d'')i összeadásával és a
 +
:&lambda;(''a''+''b''i) = &lambda;''a'' + &lambda;''b''i, a &lambda; valós számmal való szorzással
 +
kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok '''R'''<sup>2</sup> vektorterével.
 +
 +
===Halmazelméleti modell===
 +
Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az ''a'' + ''b''i alakú formális kifejezéseken az '''R'''[X] polinomgyűrűnek az (1+X<sup>2</sup>) polinommal történő maradékos osztásának maradékait értjük).
 +
 +
A számpár reprezentációban:
 +
:<math>\mathbf{C}=\mathbf{R}^{2}\,</math>
 +
az összeadás az '''R'''<sup>2</sup>-beli vektorösszeadás, a szorzás, pedig a
 +
:<math>(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,</math>
 +
művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.
 +
 +
Ez az interpretáció azért fontos, mert explicitté teszi, hogy a '''C''' örökli az '''R'''<sup>2</sup> topológiáját.
 +
 +
===Geometriai modell===
 +
 +
A szorzással együtt '''C''' egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2&times;2-es valós mátrixon M<sub>2&times;2</sub> ('''R''') algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az '''R'''<sup>2</sup> síkon:
 +
:<math>\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
 +
\begin{pmatrix}
 +
r\cos\varphi  & -r\sin\varphi\\
 +
r\sin\varphi  & r\cos\varphi
 +
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})</math>
 +
Világos, hogy ekkor az ''a'' + ''b''i kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:
 +
:<math>\left\{\begin{pmatrix}
 +
a  & -b\\
 +
b  & \;\;a
 +
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}</math>
 +
Ez a mátrixhalmaz kétdimenziós altér az  M<sub>2&times;2</sub> ('''R''') algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.
 +
 +
=='''C''' topológiája==
 +
 +
'''R'''<sup>2</sup> gömbi környezetei lesznek '''C''' gömbi környezetei. Általában, minden topologikus fogalom '''C'''-ben '''R'''<sup>2</sup>-re vezetünk vissza. Tehát, adott ''r'' > 0 valós számra és ''z''<sub>0</sub> &isin; '''C''' számra:
 +
:<math>\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}</math>
 +
az ''r'' sugarú ''z''<sub>0</sub> középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||<sub>2</sub> euklideszi norma, elvileg '''R'''<sup>2</sup> bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. &Omega; &sube; '''C''' '''nyílt''', ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:
 +
:<math>\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega</math>
 +
Egy ''A'' &sube; '''C''' halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van ''A''-ban
 +
:<math>\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}</math>
 +
Mivel '''R'''<sup>2</sup>-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és '''R'''<sup>2</sup>-'''R'''<sup>2</sup> függvények között a következő azonosítással élhetünk. Ha ''f'': '''C'''&supe; <math>\rightarrow</math>'''C''' függvény, akkor ''z'' = ''x'' + i''y'', ''f''(''z'')=''u''(''x'',''y'')+i''v''(''x'',''y''), ill.
 +
:<math>f\equiv\begin{pmatrix}u\\v\end{pmatrix}
 +
</math>
 +
 +
===Folytonosság===
 +
 +
Azt mondjuk, hogy az ''A'' &sube; '''C''' halmazon értelmezett ''f'' függvény folytonos a ''z'' &isin; '''A''' pontban, ha ''z''-ben ''f'' folytonos mint '''R'''<sup>2</sup> &supe; ''A'' <math>\to</math> '''R'''<sup>2</sup> függvény. Maga az ''f'' ''folytonos'', ha az értelmezési tartománya minden pontjában folytonos.
 +
 +
A többváltozós valós analízisből ismert tény miatt fennáll:
 +
 +
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha ''f''-et a következő alakban írjuk:
 +
:<math>f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)</math> 
 +
ahol ''u'' és ''v'' valós értékű függvények (rendre Re(''f'') és Im(''f'')), továbbá ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub> &isin; Dom(''f''), akkor a következők ekvivalensek:
 +
# ''f'' folytonos a ''z''<sub>0</sub>-ban
 +
# ''u'' és ''v'' függvények folytonosak az (''x''<sub>0</sub>,''y''<sub>0</sub>)-ban 
 +
 +
 +
A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a <math>z=x+iy</math> pontban a lim<sub>x</sub> u + i lim<sub>y</sub> v szám adja. Ekkor
 +
 +
 +
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.
 +
: <math>\lim\limits_{z\to z_0} f(z)=f(z_0)</math>
 +
A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció '''R'''<sup>2</sup>-ben lineáris legyen, hiszen ''a véges dimenziós normált terek között ható lineáris leképezések folytonosak.'' A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.
 +
 +
 +
'''Feladat.''' Legyen ''w'' &isin; '''C'''. Igazoljuk, hogy az alábbi függvények folytonosak!
 +
# <math>z\mapsto w + z\,</math>
 +
# <math>z\mapsto w\cdot z\,</math>
 +
# <math>z\mapsto \overline{z}\,</math> 
 +
# <math>z\mapsto \frac{1}{z}\quad\quad (z\ne 0)</math> 
 +
 +
''Megoldás.''
 +
 +
Az 1. az '''R'''<sup>2</sup>-ben eltolás a ''w''-nek megfelelő vektorral (Re(''w''), Im(''w''))-vel, így affin leképezés, ami folytonos.
 +
 +
2. a ''w'' mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.
 +
 +
3. azaz a konjugálás: (''x'',''y'') <math>\mapsto</math> (''x'',–''y'') a valós tengelyre való tükrözés, ami szintén lineáris.
 +
 +
Végül a reciprok:
 +
:<math>\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}</math>
 +
így, mint '''R'''<sup>2</sup> &sup;<math>\to</math> '''R'''<sup>2</sup> függvény:
 +
:<math>\begin{pmatrix}
 +
x \\
 +
y
 +
\end{pmatrix}\mapsto
 +
\begin{pmatrix}
 +
\cfrac{x}{x^2+y^2} \\
 +
\cfrac{-y}{x^2+y^2}
 +
\end{pmatrix}</math>
 +
amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.
 +
 +
'''Feladat.''' Folytonos-e a ''z'' = 0-ban az
 +
:<math>f(z)=\left\{
 +
\begin{matrix}
 +
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
 +
\\
 +
0,\quad\quad \mathrm{ha}\;z=0
 +
\end{matrix}
 +
\right.</math>
 +
 +
''Megoldás.''
 +
 +
Ha ''z'' = ''x'' + i''y'' és (''x'',''y'') &ne; (0,0), akkor:
 +
:<math>f(x,y)=\begin{pmatrix}
 +
\cfrac{y^3}{x^2+y^2} \\
 +
\cfrac{x^4}{x^2+y^2}
 +
\end{pmatrix}</math>
 +
 +
A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:
 +
:<math>\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|</math>
 +
és
 +
:<math>\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2</math>
 +
így (x,y)<math>\to</math>(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért ''f'' a 0-ban folytonos.
 +
 +
 +
Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő '''R'''<sup>2</sup>-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.
 +
 +
'''Állítás.''' Ha ''f'' és ''g'' komplex függvények és az ''z''<sub>0</sub>  pontban (mindketten értelmezettek és) folytonosak, akkor
 +
# ''f'' + ''g''
 +
# ''f'' <math>\cdot</math> ''g''
 +
# <math>\overline{f}</math>
 +
# ''g''(''z''<sub>0</sub>) &ne; 0 esetén ''f''/''g''
 +
is folytonos ''z''<sub>0</sub>-ban. 
 +
 +
 +
Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).
 +
 +
==Komplex számkör unicitása==
 +
'''C''', azaz a komplex számok teste kétdimenziós valós vektortér. '''C''' elemei  reprezentálhatók az '''R'''<sup>2</sup> síkon, a következő megfeleltetésekkel:
 +
:<math>\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2</math>
 +
a vektortérműveletek pedig:
 +
:<math>\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2</math> vektorösszeadás (''a'', ''b'', ''c'', ''d'' &isin; '''R''')
 +
:<math>\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2</math> valós számmal való szorzás (&lambda;, ''a'', ''b'' &isin; '''R''')
 +
 +
A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. '''C''' nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt '''C''' ''az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra'' -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).
 +
 +
A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa
 +
:<math>\begin{pmatrix}
 +
a & -b\\
 +
b & a
 +
\end{pmatrix}</math>
 +
A komplex számok szorzása itt a mátrixszorzás.
 +
 +
 +
 +
 +
[[Kategória:Matematika A3]]
 +
  
 
==Szeparábilis differenciálegyenlet==
 
==Szeparábilis differenciálegyenlet==

A lap 2013. szeptember 8., 07:48-kori változata

<Matematika A3a 2008


Tartalomjegyzék

Komplex számkör és reprezentációi

A komplex számok C halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.

Algebrai modell

A komplex számok olyan

a+b\mathrm{i}\,

alakú formális kifejezések, ahol a és b valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy

\mathrm{i}^2=-1\,

A komplex számok halmazát a C szimbólummal jelöljük, tehát

z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})

itt a-t a z valós részének nevezzük és Re(z)-vel jelöljük, b-t a z képzetes részének nevezzük és Im(z)-vel jelöljük. Világos, hogy Im(z) ∈ R, azaz "tiszta" valós.

Megjegyzés. A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok R[X] halmazából. Közismert, hogy a valósegyütthatós, egyhatározatlanú polinomokal, azaz a

a_0+a_1x+a_2x^2+...+a_nx^n\,

alakú kifejezésekkel, ahol az ai-k valós számok, n pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor

\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)

azaz a komplex számok halmaza a valósegyütthatós polinomok x2+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll

m(x)=a+bx\,

alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az összeadás a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x2+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a

m(x)^2+1=0\,

polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor

m(x)^2=-1\,

azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az m(x)=x polinom az, mely az i egység szerepét játssza és így is jelöljük ezt ezentúl.


Akárcsak a legfeljebb elsőfokú a + bx alakú polinomok esetén, a C-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az a + bx alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i2=-1 egyenlőség miatt visszaérkeznek az a + bi alakú kifejezések körébe. Ezért lesz C zárt arra a szorzásra, amit a polinomok mintájára definiálunk.

Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:

Állítás. A C számkör a komplex számok

(a+bi) + (c+di) = (a+c) + (b+d)i összeadásával és a
λ(a+bi) = λa + λbi, a λ valós számmal való szorzással

kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok R2 vektorterével.

Halmazelméleti modell

Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az a + bi alakú formális kifejezéseken az R[X] polinomgyűrűnek az (1+X2) polinommal történő maradékos osztásának maradékait értjük).

A számpár reprezentációban:

\mathbf{C}=\mathbf{R}^{2}\,

az összeadás az R2-beli vektorösszeadás, a szorzás, pedig a

(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,

művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.

Ez az interpretáció azért fontos, mert explicitté teszi, hogy a C örökli az R2 topológiáját.

Geometriai modell

A szorzással együtt C egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2×2-es valós mátrixon M2×2 (R) algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az R2 síkon:

\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
\begin{pmatrix}
r\cos\varphi  & -r\sin\varphi\\
r\sin\varphi  & r\cos\varphi
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})

Világos, hogy ekkor az a + bi kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:

\left\{\begin{pmatrix}
a  & -b\\
b  & \;\;a
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}

Ez a mátrixhalmaz kétdimenziós altér az M2×2 (R) algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.

C topológiája

R2 gömbi környezetei lesznek C gömbi környezetei. Általában, minden topologikus fogalom C-ben R2-re vezetünk vissza. Tehát, adott r > 0 valós számra és z0C számra:

\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}

az r sugarú z0 középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||2 euklideszi norma, elvileg R2 bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. Ω ⊆ C nyílt, ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:

\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega

Egy AC halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van A-ban

\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}

Mivel R2-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és R2-R2 függvények között a következő azonosítással élhetünk. Ha f: C\rightarrowC függvény, akkor z = x + iy, f(z)=u(x,y)+iv(x,y), ill.

f\equiv\begin{pmatrix}u\\v\end{pmatrix}

Folytonosság

Azt mondjuk, hogy az AC halmazon értelmezett f függvény folytonos a zA pontban, ha z-ben f folytonos mint R2A \to R2 függvény. Maga az f folytonos, ha az értelmezési tartománya minden pontjában folytonos.

A többváltozós valós analízisből ismert tény miatt fennáll:

Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha f-et a következő alakban írjuk:

f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)

ahol u és v valós értékű függvények (rendre Re(f) és Im(f)), továbbá z0 = x0 + iy0 ∈ Dom(f), akkor a következők ekvivalensek:

  1. f folytonos a z0-ban
  2. u és v függvények folytonosak az (x0,y0)-ban


A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a z = x + iy pontban a limx u + i limy v szám adja. Ekkor


Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.

\lim\limits_{z\to z_0} f(z)=f(z_0)

A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció R2-ben lineáris legyen, hiszen a véges dimenziós normált terek között ható lineáris leképezések folytonosak. A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.


Feladat. Legyen wC. Igazoljuk, hogy az alábbi függvények folytonosak!

  1. z\mapsto w + z\,
  2. z\mapsto w\cdot z\,
  3. z\mapsto \overline{z}\,
  4. z\mapsto \frac{1}{z}\quad\quad (z\ne 0)

Megoldás.

Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.

2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.

3. azaz a konjugálás: (x,y) \mapsto (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.

Végül a reciprok:

\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}

így, mint R2\to R2 függvény:

\begin{pmatrix}
x \\
y
\end{pmatrix}\mapsto 
\begin{pmatrix}
\cfrac{x}{x^2+y^2} \\
\cfrac{-y}{x^2+y^2}
\end{pmatrix}

amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.

Feladat. Folytonos-e a z = 0-ban az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
\\
0,\quad\quad \mathrm{ha}\;z=0
\end{matrix}
\right.

Megoldás.

Ha z = x + iy és (x,y) ≠ (0,0), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{y^3}{x^2+y^2} \\
\cfrac{x^4}{x^2+y^2}
\end{pmatrix}

A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:

\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|

és

\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2

így (x,y)\to(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.


Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.

Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor

  1. f + g
  2. f \cdot g
  3. \overline{f}
  4. g(z0) ≠ 0 esetén f/g

is folytonos z0-ban.


Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).

Komplex számkör unicitása

C, azaz a komplex számok teste kétdimenziós valós vektortér. C elemei reprezentálhatók az R2 síkon, a következő megfeleltetésekkel:

\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2

a vektortérműveletek pedig:

\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2 vektorösszeadás (a, b, c, dR)
\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2 valós számmal való szorzás (λ, a, bR)

A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. C nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt C az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).

A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa

\begin{pmatrix} 
a & -b\\
b & a
\end{pmatrix}

A komplex számok szorzása itt a mátrixszorzás.


Szeparábilis differenciálegyenlet

1. Feladat. Milyen függvények elégítik ki az alábbi differenciálegynletet. Van-e olyan, mely a 0-ban 0-t vesz föl, illetve a 0-ban 1-et?

y'=\frac{\sin x}{y^6}\,

Megoldás. Nyilván a megoldás sehol sem vehet föl nulla értéket, mert akkor

\frac{\sin x}{y^6(x)}\,

ott nem lenne értelmezve.

A mechanikus megoldási eljárás a következő:

\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\sin x}{y^6}\,
y^6\mathrm{d}y=\sin(x)\,\mathrm{d}x\,
\int y^6\mathrm{d}y=\int \sin(x)\,\mathrm{d}x\,
\frac{y^7}{7}=-\cos(x)+C\,

ez az implicit általános megoldás és

y(x)=\sqrt[7]{-7\cos(x)+C}\,

az explicit általános megoldás.

A megoldás mechanikus megkeresése után meg kell jegyeznünk, hogy csak olyan intervallumokra kell szorítkoznunk, ahol az y nem ad nullát. Ezeken belül vannak olyan esetek, melyek nem is differenciálhatók a 7. gyök miatt.

(0,1)-en áthaladó megoldás a C = 8/7-es görbe.

Egzisztencia és unicitás

Legyen f : I \to R, g: J \to R intervallumon értelmezett folytonos függvények, ahol g sehol sem nulla. Ekkor az y: K \to J differenciálható függvény, ahol KI megoldása az

y'=f(x)g(y)\,

ún. szeparábilis diffegyenletnek, ha minden xK-ra:

y'(x)=f(x)g(y(x))\,

Ekkor a helyettesítéses integrálás szabálya miatt

\int\frac{y'}{g(y)}\,dy=G(y)=\int f(x)\,dx=F(x)+C

azaz

G\circ y= F+C\,

ahol G az 1/g egy integrálfüggvénye, F az f-é.

Ennek a függvlnyegyenletnek a differenciálható megoldásai megoldások és ezt nevezzük a diffegyenlet implicit alakban adott általános megoldásának.

Ha G injektív, akkor az explicit általános megoldás globális:

y(x)=G^{-1}(F(x)+C)\,

Ha G nem injektív, de van, ahol a deriváltja nem nulla (tehát 1/g nem konstans, azaz g nem konstans, azaz a feladat nem intézhető el primitív függvény kereséssel), és (x0, y0) olyan, hogy f(x,y)=G(y)-F(x)-C és G(y0)-F(x0)-C=0, akkor az inverzfüggvénytétel értelmében van lokális megoldása x0 körül. Ilyen (x0, y0) a C alkalmas beállításával mindig alálható. (Ezt elhisszük.) Ez a kezdetiérték probléma szeparábilis esetben.

Vannak olyan esetek amikor g felveszi a 0-t. Ekkor a fenti sematikus megoldáson kívül egyéb meoldás is felléphet.

2. Feladat. Oldjuk meg az y'=ay\, egyenletet.

3. Feladat. (1+x^3)dx - x^2ydy=0\,

Függvényegyenletek

4. Feladat. Van-e nemdifferenciálható, de folytonos megoldása az y^2=x^2\, függvényegyenletnek?

5. Feladat. Hány megoldása van az |f(x)|=ex R-en? Hány diffható ebből?


Homogén fokszámú egyenletek

Az F(x,y) n-homogén függvény, ha minden λ esetén

Fxy) = λnF(x,y).

Az y'=F(x,y) egyenlet homogén, ha F(x,y) 0-homogén.

Homogén egyenleteknél az y=ux helyettesítés vezet célra. Akkor

y'=u'x+u

Feladat. (2x+y)dx + (y+x)dy =0 Homogén, mert

y'=-\frac{2x+y}{x+y}

jobb oldala 0-homogén:

-\frac{2x+y}{x+y}=-\frac{2\lambda x+\lambda y}{\lambda x+\lambda y}=-\frac{2x+y}{x+y}
u'x+u=-\frac{2+u}{1+u}
u'x=-\frac{2+2u+u^2}{1+u}
\frac{1+u}{2+2u+u^2}u'=-\frac{1}{x}

Egzakt differenciálegynlet

Személyes eszközök