Matematika A3a 2008/4. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Szeparábilis differenciálegyenlet)
179. sor: 179. sor:
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]
  
 
==Szeparábilis differenciálegyenlet==
 
 
'''1. Feladat.''' Milyen függvények elégítik ki az alábbi differenciálegynletet. Van-e olyan, mely a 0-ban 0-t vesz föl, illetve a 0-ban 1-et?
 
:<math>y'=\frac{\sin x}{y^6}\,</math>
 
''Megoldás.'' Nyilván a megoldás sehol sem vehet föl nulla értéket, mert akkor
 
:<math>\frac{\sin x}{y^6(x)}\,</math>
 
ott nem lenne értelmezve.
 
 
A mechanikus megoldási eljárás a következő:
 
:<math>\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\sin x}{y^6}\,</math>
 
:<math>y^6\mathrm{d}y=\sin(x)\,\mathrm{d}x\,</math>
 
:<math>\int y^6\mathrm{d}y=\int \sin(x)\,\mathrm{d}x\,</math>
 
:<math>\frac{y^7}{7}=-\cos(x)+C\,</math>
 
ez az implicit általános megoldás és
 
:<math>y(x)=\sqrt[7]{-7\cos(x)+C}\,</math>
 
az explicit általános megoldás.
 
 
A megoldás mechanikus megkeresése után meg kell jegyeznünk, hogy csak olyan intervallumokra kell szorítkoznunk, ahol az y nem ad nullát. Ezeken belül vannak olyan esetek, melyek nem is differenciálhatók a 7. gyök miatt.
 
 
(0,1)-en áthaladó megoldás a C = 8/7-es görbe.
 
 
===Egzisztencia és unicitás===
 
 
Legyen ''f'' : ''I'' <math>\to</math> '''R''', ''g'': ''J''  <math>\to</math> '''R''' intervallumon értelmezett folytonos függvények, ahol ''g'' sehol sem nulla. Ekkor az y: ''K'' <math>\to</math> '''J''' differenciálható függvény, ahol ''K'' &sube; ''I'' megoldása az
 
:<math>y'=f(x)g(y)\,</math>
 
ún. szeparábilis diffegyenletnek, ha minden ''x'' &isin; ''K''-ra:
 
:<math>y'(x)=f(x)g(y(x))\,</math>
 
 
Ekkor a helyettesítéses integrálás szabálya miatt
 
:<math>\int\frac{y'}{g(y)}\,dy=G(y)=\int f(x)\,dx=F(x)+C</math>
 
azaz
 
:<math>G\circ y= F+C\,</math>
 
ahol G az 1/g egy integrálfüggvénye, F az f-é.
 
 
Ennek a függvlnyegyenletnek a differenciálható megoldásai megoldások és ezt nevezzük a diffegyenlet implicit alakban adott általános megoldásának.
 
 
Ha G injektív, akkor az explicit általános megoldás globális:
 
:<math>y(x)=G^{-1}(F(x)+C)\,</math>
 
 
Ha G nem injektív, de van, ahol a deriváltja nem nulla (tehát 1/g nem konstans, azaz g nem konstans, azaz a feladat nem intézhető el primitív függvény kereséssel), és (x<sub>0</sub>, y<sub>0</sub>) olyan, hogy f(x,y)=G(y)-F(x)-C és G(y<sub>0</sub>)-F(x<sub>0</sub>)-C=0, akkor az inverzfüggvénytétel értelmében van lokális megoldása x<sub>0</sub> körül. Ilyen (x<sub>0</sub>, y<sub>0</sub>) a C alkalmas beállításával mindig alálható. (Ezt elhisszük.) Ez a kezdetiérték probléma szeparábilis esetben.
 
 
Vannak olyan esetek amikor g felveszi a 0-t. Ekkor a fenti sematikus megoldáson kívül egyéb meoldás is felléphet.
 
 
'''2. Feladat.''' Oldjuk meg az <math>y'=ay\,</math> egyenletet.
 
 
'''3. Feladat.''' <math>(1+x^3)dx - x^2ydy=0\,</math>
 
=== Függvényegyenletek===
 
 
'''4. Feladat.''' Van-e nemdifferenciálható, de folytonos megoldása az <math>y^2=x^2\,</math> függvényegyenletnek?
 
 
'''5. Feladat.''' Hány megoldása van az |f(x)|=e<sup>x</sup> '''R'''-en? Hány diffható ebből?
 
 
 
===Homogén fokszámú egyenletek===
 
 
Az F(x,y) ''n''-homogén függvény, ha minden &lambda; esetén
 
:<math>F(\lambda x,\lambda y)=\lambda^n F(x,y).</math>
 
Az y'=F(x,y) egyenlet homogén, ha F(x,y) 0-homogén.
 
 
Homogén egyenleteknél az y=ux helyettesítés vezet célra. Akkor
 
:y'=u'x+u
 
 
 
'''Feladat.''' (2x+y)dx + (y+x)dy =0
 
Homogén, mert
 
:<math>y'=-\frac{2x+y}{x+y}</math>
 
jobb oldala 0-homogén:
 
:<math>-\frac{2x+y}{x+y}=-\frac{2\lambda x+\lambda y}{\lambda x+\lambda y}=-\frac{2x+y}{x+y}</math>
 
:<math>u'x+u=-\frac{2+u}{1+u}</math>
 
:<math>u'x=-\frac{2+2u+u^2}{1+u}</math>
 
:<math>\frac{1+u}{2+2u+u^2}u'=-\frac{1}{x}</math>
 
 
===Egzakt differenciálegynlet===
 
  
  
  
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]

A lap 2013. szeptember 8., 07:49-kori változata

<Matematika A3a 2008


Tartalomjegyzék

Komplex számkör és reprezentációi

A komplex számok C halmazát és műveleteit legalább három, lényegesen más szemszögből lehet láttatni. A meghatározottság kedvéért összefoglaljuk a komplex számok legfontosabb algebrai tulajdonságait. Nem térünk ki minden egyes műveleti tulajdonságra, ezek megtalálhatók a komplex számok algebráját leíró tankönyvekben.

Algebrai modell

A komplex számok olyan

a+b\mathrm{i}\,

alakú formális kifejezések, ahol a és b valós számok, i pedig azzal a speciális tulajdonsággal rendelkezik, hogy

\mathrm{i}^2=-1\,

A komplex számok halmazát a C szimbólummal jelöljük, tehát

z\in \mathbf{C}\quad\Leftrightarrow\quad z=a+bi\quad\quad(a,b\in \mathbf{R})

itt a-t a z valós részének nevezzük és Re(z)-vel jelöljük, b-t a z képzetes részének nevezzük és Im(z)-vel jelöljük. Világos, hogy Im(z) ∈ R, azaz "tiszta" valós.

Megjegyzés. A kevéssé informatív "formális kifejezés" helyett bevezethetjük a komplex számokat valódi algebrai objektumokként. A komplex számok halmazát egy a maradékos osztással rendelkező halmazból konstrulájuk: a valós együtthatós polinomok R[X] halmazából. Közismert, hogy a valósegyütthatós, egyhatározatlanú polinomokal, azaz a

a_0+a_1x+a_2x^2+...+a_nx^n\,

alakú kifejezésekkel, ahol az ai-k valós számok, n pedig nemnegatív egész, lehet maradékosan osztani (polinomosztás). Ekkor

\mathbf{C}=_{\mathrm{def}}\mathbf{R}[X]/(x^2+1)

azaz a komplex számok halmaza a valósegyütthatós polinomok x2+1 polinommal történő osztási maradékai. Világos, hogy minden ilyen maradék előáll

m(x)=a+bx\,

alakban, azaz legfeljebb elsőfokú polinom alakjában. Ebben a számkörben az összeadás a polinomösszeadás, a szorzás a polinomok szorzása (illetve ezen eredményének x2+1-vel történő osztási maradéka). Amikor két elsőfokú polinom szorzata másodfokú, akkor sem lépünk ki a számkörből, hisz a

m(x)^2+1=0\,

polinomegyenlet megoldható, éspedig az m(x)=x polinom (az identitás) megoldás. Ekkor

m(x)^2=-1\,

azaz ebben a számkörben létezik a -1-nek négyzetgyöke. Az m(x)=x polinom az, mely az i egység szerepét játssza és így is jelöljük ezt ezentúl.


Akárcsak a legfeljebb elsőfokú a + bx alakú polinomok esetén, a C-t alkotó formális kifejezések között is értelmezhetjük az összeadást és a szorzást. Ezeket pontosan úgy definiáljuk, mint az a + bx alakú polinomok összegét és szorzatát, azzal a specialitással, hogy ahol a polinomok a szorzást követően másodfokúvá válnak, ott a komplex számok az i2=-1 egyenlőség miatt visszaérkeznek az a + bi alakú kifejezések körébe. Ezért lesz C zárt arra a szorzásra, amit a polinomok mintájára definiálunk.

Már innen is látszik, hogy a komplex számok halmaza kétdimenziós valós test feletti vektortér. Kimondhatjuk tehát:

Állítás. A C számkör a komplex számok

(a+bi) + (c+di) = (a+c) + (b+d)i összeadásával és a
λ(a+bi) = λa + λbi, a λ valós számmal való szorzással

kétdimenziós valós vektorteret alkotnak és így lineárisan izomorfak a valós számpárok R2 vektorterével.

Halmazelméleti modell

Az algebrai modellben nem teljesen világos, hogy mi is az i elem. Az előző állítás azonban lehetőséget biztosít arra, hogy konkrétan megadjuk a komplex számok halmazát mindenféle olyan kifejezés használata nélkül, mint "formális kifejezés" stb. (Valójában persze az algebrai modell is jól értelmezett módon adja meg a komplex számok halmazát, ha az a + bi alakú formális kifejezéseken az R[X] polinomgyűrűnek az (1+X2) polinommal történő maradékos osztásának maradékait értjük).

A számpár reprezentációban:

\mathbf{C}=\mathbf{R}^{2}\,

az összeadás az R2-beli vektorösszeadás, a szorzás, pedig a

(a+b\mathrm{i})(c+d\mathrm{i})=(ac-db)+(ad+bc)\mathrm{i}\,

művelet, mely természetesen a "polinomszorzásnak" az előző állításbeli izomorfizmus által létesített képe.

Ez az interpretáció azért fontos, mert explicitté teszi, hogy a C örökli az R2 topológiáját.

Geometriai modell

A szorzással együtt C egységelemes, nullosztómentes algebrát alkot (tehát vektortér és van egy mindkét változójában lineáris belső szorzás, melyben van egység és „nullával nem lehet osztani”). Felmerülhet a gyanúnk, hogy talán reprezentálhatjuk a komplex számokat a 2×2-es valós mátrixon M2×2 (R) algebrájának egy részalgebrájaként. Ezt a komplex számok trigonometrikus alakja segítségével tehetjük meg. Ismert, hogy a komplex számmal való szorzás forgatva nyújtás, azaz lineáris leképezés az R2 síkon:

\mathbf{C}\ni z=r\cdot(\cos\varphi+\mathrm{i}\sin\varphi)\;\equiv\;
\begin{pmatrix}
r\cos\varphi  & -r\sin\varphi\\
r\sin\varphi  & r\cos\varphi
\end{pmatrix}\in \mathrm{M}_{2\times 2}(\mathbf{R})

Világos, hogy ekkor az a + bi kanonikus alakot használva a komplex számoknak megfelelő mátrixok halmaza:

\left\{\begin{pmatrix}
a  & -b\\
b  & \;\;a
\end{pmatrix}\in\mathrm{M}_{2\times 2}(\mathbf{R}): a,b\in \mathbf{R}\right\}

Ez a mátrixhalmaz kétdimenziós altér az M2×2 (R) algebrában, melyet például a közvetve onnan is láthatjuk, hogy forgatva nyújtások is alteret alkotnak a lineáris leképezések terében.

C topológiája

R2 gömbi környezetei lesznek C gömbi környezetei. Általában, minden topologikus fogalom C-ben R2-re vezetünk vissza. Tehát, adott r > 0 valós számra és z0C számra:

\mathrm{B}_r(z_0)\;=\;\{z\in \mathbf{C}\mid |z-z_0|<r\}

az r sugarú z0 középpontú nyílt gömbi környezet. Itt a | . | abszolútérték helyett, mely a || . ||2 euklideszi norma, elvileg R2 bármelyik normája alkalmas lenne, hisz véges dimenziós normált térben minden norma ekvivalens, azaz ugyanazokat a nyílt halmazokat határozzák meg. Szokásos módon értelmezettek az előbb említett nyílt halmazok is. Ω ⊆ C nyílt, ha minden pontjával együtt, annak egy nyílt gömbi környezetét is tartalmazza:

\forall z\in \Omega\quad \exists r>0\quad \mathrm{B}_r(z)\subseteq \Omega

Egy AC halmaz belsején értjük azon pontok halmazát, melyeknek egy egész gömbi környezete benne van A-ban

\mathrm{int}(A)=\{z\in \mathbf{C}\mid  \exists r>0\quad \mathrm{B}_r(z)\subseteq A\}

Mivel R2-ben minden norma ekvivalens (ugyanazokat a nyílt halmazokat határozzák meg), ezért adott feladatokban tetszőleges, a feladathoz jól illeszkedő normát választhatunk. Topologikus szempontokból a komplex és R2-R2 függvények között a következő azonosítással élhetünk. Ha f: C\rightarrowC függvény, akkor z = x + iy, f(z)=u(x,y)+iv(x,y), ill.

f\equiv\begin{pmatrix}u\\v\end{pmatrix}

Folytonosság

Azt mondjuk, hogy az AC halmazon értelmezett f függvény folytonos a zA pontban, ha z-ben f folytonos mint R2A \to R2 függvény. Maga az f folytonos, ha az értelmezési tartománya minden pontjában folytonos.

A többváltozós valós analízisből ismert tény miatt fennáll:

Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha f-et a következő alakban írjuk:

f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)

ahol u és v valós értékű függvények (rendre Re(f) és Im(f)), továbbá z0 = x0 + iy0 ∈ Dom(f), akkor a következők ekvivalensek:

  1. f folytonos a z0-ban
  2. u és v függvények folytonosak az (x0,y0)-ban


A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a z = x + iy pontban a limx u + i limy v szám adja. Ekkor


Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.

\lim\limits_{z\to z_0} f(z)=f(z_0)

A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció R2-ben lineáris legyen, hiszen a véges dimenziós normált terek között ható lineáris leképezések folytonosak. A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.


Feladat. Legyen wC. Igazoljuk, hogy az alábbi függvények folytonosak!

  1. z\mapsto w + z\,
  2. z\mapsto w\cdot z\,
  3. z\mapsto \overline{z}\,
  4. z\mapsto \frac{1}{z}\quad\quad (z\ne 0)

Megoldás.

Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.

2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.

3. azaz a konjugálás: (x,y) \mapsto (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.

Végül a reciprok:

\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}

így, mint R2\to R2 függvény:

\begin{pmatrix}
x \\
y
\end{pmatrix}\mapsto 
\begin{pmatrix}
\cfrac{x}{x^2+y^2} \\
\cfrac{-y}{x^2+y^2}
\end{pmatrix}

amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.

Feladat. Folytonos-e a z = 0-ban az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
\\
0,\quad\quad \mathrm{ha}\;z=0
\end{matrix}
\right.

Megoldás.

Ha z = x + iy és (x,y) ≠ (0,0), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{y^3}{x^2+y^2} \\
\cfrac{x^4}{x^2+y^2}
\end{pmatrix}

A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:

\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|

és

\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2

így (x,y)\to(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.


Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.

Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor

  1. f + g
  2. f \cdot g
  3. \overline{f}
  4. g(z0) ≠ 0 esetén f/g

is folytonos z0-ban.


Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).

Komplex számkör unicitása

C, azaz a komplex számok teste kétdimenziós valós vektortér. C elemei reprezentálhatók az R2 síkon, a következő megfeleltetésekkel:

\mathbf{C}\ni a+bi\equiv (a,b)\in \mathbf{R}^2

a vektortérműveletek pedig:

\mathbf{C}\ni (a+bi)+(c+di)\equiv (a,b)+(c,d)\in \mathbf{R}^2 vektorösszeadás (a, b, c, dR)
\mathbf{C}\ni \lambda\cdot(a+bi)\equiv \lambda.(a,b)\in \mathbf{R}^2 valós számmal való szorzás (λ, a, bR)

A komplex számok körét a komplex szorzás tulajdonságai egyértelműsítik. C nem csak kétdimenziós valós vektortér, de a szorzással algebra is, sőt C az egyetlen kétdimenziós kommutatív, nullosztómentes valós algebra -- izomorfizmus erejéig. Sok megjelenési formája lehet a komplex számoknak, de bármely két reprezentáció olyan, hogy található olyan kölcsönösen egyértelmű leképezés köztük, mely lineáris és megtartja a szorzást is (azaz algebra izomorfizmus).

A nullosztómentesség és a kommutativitás jellemzően a mátrixalgebrákban nemtriviális tulajdonság. A komplex számok olyan lineáris leképezéseknek felelnek meg, melyek mátrixa

\begin{pmatrix} 
a & -b\\
b & a
\end{pmatrix}

A komplex számok szorzása itt a mátrixszorzás.

Személyes eszközök