Matematika A3a 2008/4. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2016. március 4., 21:55-kor történt szerkesztése után volt.

<Matematika A3a 2008

Állandó együtthatós lineáris differenciálegyenlet

Csak a másodrendű esetet tárgyaljuk:

ay''+by'+cy=f(x)\,

ha a, b, cR.

Ilyenkor a homogén egyenlet megoldását az aλ2+bλ+c=0 karakterisztikus egyenlet megoldásából származó λ gyökökből száraztatjuk (bizonyítása a bizonyítások között).

y(x)=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}, ha \lambda_1\ne\lambda_2\in\mathbf{R}\,
y(x)=C_1e^{\lambda x}+C_2xe^{\lambda x}\,, ha \lambda_1=\lambda=\lambda\in\mathbf{R}\, (gyök vagy belső rezonancia esete)
y(x)=C_1e^{\alpha x}\cos(\beta x)+C_2e^{\alpha x}\sin(\beta x)\,, ha \lambda_{1,2}=\alpha\pm\beta\in\mathbf{C}\,

Az inhomogén egyenlet megoldását a következő alakban keressük. Ha az inhomogén tag az alábbi alakban írható

f(x)=e^{ax}\left(p(x)\cos(bx)+q(x)\sin(bx)\right)

ahol p(x) és q(x) polinomok és a a+ibC szám m szeres gyöke az aλ2+bλ+c karakterisztikus polinomnak, akkor az yp(x) partikuláris megoldásra a feltevés:

y_p(x)=x^me^{ax}\left(P(x)\cos(bx)+Q(x)\sin(bx)\right)

ahol P(x) és Q(x) olyan polinomok, hogy deg P(x)=deg Q(x)= max{deg p(x), deg q(x)}.

Példák

3. gyakorlat
5. gyakorlat
Személyes eszközök