Matematika A3a 2008/4. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2016. március 4., 22:39-kor történt szerkesztése után volt.

<Matematika A3a 2008

Állandó együtthatós lineáris differenciálegyenlet

Csak a másodrendű esetet tárgyaljuk:

ay''+by'+cy=f(x)\,

ha a, b, cR.

Ilyenkor a homogén egyenlet megoldását az aλ2+bλ+c=0 karakterisztikus egyenlet megoldásából származó λ gyökökből száraztatjuk (bizonyítása a bizonyítások között).

y(x)=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}, ha \lambda_1\ne\lambda_2\in\mathbf{R}\,
y(x)=C_1e^{\lambda x}+C_2xe^{\lambda x}\,, ha \lambda_1=\lambda=\lambda\in\mathbf{R}\, (gyök vagy belső rezonancia esete)
y(x)=C_1e^{\alpha x}\cos(\beta x)+C_2e^{\alpha x}\sin(\beta x)\,, ha \lambda_{1,2}=\alpha\pm\beta\in\mathbf{C}\,

Az inhomogén egyenlet megoldását a következő alakban keressük. Ha az inhomogén tag az alábbi alakban írható

f(x)=e^{ax}\left(p(x)\cos(bx)+q(x)\sin(bx)\right)

ahol p(x) és q(x) polinomok és a a+ibC szám m szeres gyöke az aλ2+bλ+c karakterisztikus polinomnak, akkor az yp(x) partikuláris megoldásra a feltevés:

y_p(x)=x^me^{ax}\left(P(x)\cos(bx)+Q(x)\sin(bx)\right)

ahol P(x) és Q(x) olyan polinomok, hogy deg P(x)=deg Q(x)= max{deg p(x), deg q(x)}.

Rezonanciák

1. y''+9y=\sin(3x)\,

Mo. \lambda^2+9=0\,, azaz \lambda_{1,2}=\pm 3i\,. Innen

yH(x) = C1cos(3x) + C2sin(3x)

Mivel

f(x)=\sin(3x)\,

ezért a + bi = 3i egyszeres megoldása a karakterisztikus egyenletnek, m=1 és az általános P(x), Q(x) polinomok konstansok: A,B, így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=Ax\cos(3x)+Bx\sin(3x)\,

alakban keresendő.

2. y''+4y'+4=e^{2x}\,

Mo. \lambda^2+4\lambda+4=0\,, azaz \lambda_{1,2}=2\,. Innen

y_H(x)=C_1e^{2x}+C_2e^{2x}\,

Mivel

f(x)=e^{2x}\,

ezért a = 2 kétszeres megoldása a karakterisztikus egyenletnek, és ezért m=2 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik, de P(x)=A állandó, így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=Ax^2e^{2x}\,

alakban keresendő.

3. y''-3y'+2=xe^{x}\,

Mo. \lambda^2-3\lambda+2=0\,, azaz \lambda_{1,2}=1;\qquad 2\,. Innen

y_H(x)=C_1e^{x}+C_2e^{2x}\,

Mivel

f(x)=xe^{x}\,

ezért a = 1 egyszeres megoldása a karakterisztikus egyenletnek, és ezért m=1 az általános P(x), Q(x) polinomok közül csak P(x) marad, mert b=0 lévén Q(x) kiesik (sin(0)=0), de P(x)=Ax+B elsőfokú, mert p(x)=x (hiszen cos(0)=1 és ez magmaradt), így az inhomogén egyenlet egy partikuláris megoldását az

y_p(x)=x(Ax+B)e^{x}\,

alakban keresendő.

Állandó együtthatós elsőrendű inhomogén lineáris differenciálegyenletrendszer

Az

\dot{\mathbf{x}}(t)=\mathbf{A}\cdot\mathbf{x}(t)+\mathbf{b}(t)

egyenletrendszerben A konstans valós mátrix, b(t) vektorfüggvény. Csak azt az esetet vizsgáljuk, amikor A-nak különböző valós sajátvektorai vannak.

A homogén egyenlet megoldását az úgy nevezett mátrix alapmegoldásból állítjuk elő. Keresünk tehát olyan \mathbf{\Psi}(t) mátrixfüggvényt, melyre:

\dot{\mathbf{\Psi}}(t)=\mathbf{A}\cdot\mathbf{\Psi}(t)

Belátjuk, hogy erre az A mátrix \mathbf{s}_{1,2} sajátvektoraiból összerakott

Értelmezés sikertelen (formai hiba): \mathbf{\Psi}}(t)= \begin{pmatrix} & | & & |\\ e^{\lambda_1 t}\cdot & \mathbf{s}_1 & e^{\lambda_2 t}\cdot & \mathbf{s}_1\\ & | & & | \end{pmatrix}



3. gyakorlat
5. gyakorlat
Személyes eszközök