Matematika A3a 2008/5. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2013. október 6., 20:17-kor történt szerkesztése után volt.

Feladat. Legyen wC. Igazoljuk, hogy az alábbi függvények folytonosak!

  1. z\mapsto w + z\,
  2. z\mapsto w\cdot z\,
  3. z\mapsto \overline{z}\,
  4. z\mapsto \frac{1}{z}\quad\quad (z\ne 0)

Megoldás.

Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.

2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.

3. azaz a konjugálás: (x,y) \mapsto (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.

Végül a reciprok:

\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}

így, mint R2\to R2 függvény:

\begin{pmatrix}
x \\
y
\end{pmatrix}\mapsto 
\begin{pmatrix}
\cfrac{x}{x^2+y^2} \\
\cfrac{-y}{x^2+y^2}
\end{pmatrix}

amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.

Feladat. Folytonos-e a z = 0-ban az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
\\
0,\quad\quad \mathrm{ha}\;z=0
\end{matrix}
\right.

Megoldás.

Ha z = x + iy és (x,y) ≠ (0,0), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{y^3}{x^2+y^2} \\
\cfrac{x^4}{x^2+y^2}
\end{pmatrix}

A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:

\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|

és

\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2

így (x,y)\to(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.


Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.

Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor

  1. f + g
  2. f \cdot g
  3. \overline{f}
  4. g(z0) ≠ 0 esetén f/g

is folytonos z0-ban.


Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).

Tartalomjegyzék

Feladat folytonosságra

Feladat. Folytonos-e a z = i-ben az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{i}z+1}{|z-\mathrm{i}|},\quad\quad\mathrm{ha}\;z\ne \mathrm{i}\\
\\
0,\quad\quad \mathrm{ha}\;z=\mathrm{i}
\end{matrix}
\right.

Ha z = x + iy és (x,y) ≠ (0,1), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{-y+1}{\sqrt{x^2+(y-1)^2}} \\
\cfrac{x}{\sqrt{x^2+(y-1)^2}}
\end{pmatrix}

Már az első komponens határértéke sem létezik, hisz (x,y)=(0,y) mentén alulról a (0,1)-hez tartva a határérték -1, az x=y-1 mentén pedig -1/gyök kettő.

A második tényező szintén nem.

Határérték

Komplex függvény C-beli pontban vett C-beli határértéke ugyanúgy értelmezett, mint az R2 esetben. Itt is érvényes, hogy pontosan akkor látezik a határérték, ha a komponensfüggvényeknek létezik a határértéke és ekkor a határérték egyenlő lesz a valós és képzetes komponens határértékéből alkotott komplex számmal.

A ∞ miatt érdemes külön is megfogalmazni a határérték definícióját, bár az teljesen analóg a valós esettel. Legyen f egy az AC halmazon értelmezett, C-be képező függvény. Legyen \scriptstyle{u\in \overline{\mathbf{C}}} az A torlódási pontja, azaz minden r > 0 esetén legyen olyan aA, hogy a ∈ Br(u)\{u}. Azt mondjuk, hogy az f-nek a \scriptstyle{v\in \overline{\mathbf{C}}} elem határértéke az u-ban, ha

minden ε > 0 esetén létezik olyan δ > 0, hogy minden zA ∩ Bδ(u)\{u}-re f(z) ∈ Bε(v)

ahol természetesen a ∞ környezetei a már említett módon értendők.

Feladat. Igazoljuk definíció szerint, hogy

  1. \lim\limits_{z\to 0}\frac{1}{z}=\infty
  2. \lim\limits_{z\to \infty}\frac{1}{z}=0

1. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| < δ esetén, hogy a függvényérték a ∞ ε sugarú környezetébe esik, azaz:

\left|\frac{1}{z}\right|>\frac{1}{\varepsilon}

Világos, hogy ezt azt jelenti, hogy

|z|<\varepsilon

amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| < δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.

2. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| > 1/δ esetén, hogy a függvényérték a 0-nak ε sugarú környezetébe esik, azaz:

\left|\frac{1}{z}\right|<\varepsilon

Világos, hogy ezt azt jelenti, hogy

|z|>\frac{1}{\varepsilon}

amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| > 1/δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.

A végtelen határérékkel történő számolás szabályai előtt definiálnunk kell néhány kibővített műveletet. Ezt a következők szellemében tesszük:

Ha a és b valamelyike a ∞ szimbólum (a másik, ha nem ilyen, akkor komplex szám), akkor az a * b alapműveletet akkor értelmezzük a c szimbólumként (mely szintén vagy komplex szám, vagy az ∞), ha minden a határértékű f függvény esetén és minden b határértékű g függvény esetén a f*g szükségszerűen a c-hez tart. Ekkor mondjuk tehát, hogy az
a * b = c
definíció jó.

Például a ∞ + ∞ művelet feltétlenül értelmezett és értéke a ∞, mert könnyen látható, hogy bármely két, a ∞-hez tartó függvény összege is a ∞-hez tart. De a 0 \cdot ∞ művelet nem értelmezhető, mert van két függvénypár, mely ilyen alakú határértékekkel rendelkezik, de a szorzatuk máshoz tart. Pl.: (1/Re(z)) \cdot Re(z) \to 1, a z=0-ban, de (1/Re(z)) \cdot 2 Re(z) \to 2 a z=0-ban.

DefinícióVégtelen és alapműveletek – Az alábbi műveleti szabályokat vezetjük be a ∞, szimbólumra vonatkozóan, az alábbiakban z tetszőleges komplex szám, n tetszőleges nemnulla komplex szám:

  1. \infty+z=\infty ,
  2. \infty-z=\infty,  \quad\quad z-\infty=\infty,
  3. \infty\cdot\infty=\infty, \quad\quad \infty\cdot n=\infty,
  4. \frac{z}{\infty}=0 \quad\quad \frac{\infty}{z}=\infty,

továbbá a szorzás és az összeadás kommutatív.

Megjegyezzük még, hogy \overline{\infty}=\infty, azaz a végtelen konjugáltja saját maga.

DefinícióHatározatlan esetek – Az alábbi alapműveletek nem értelmezhetők:

  1. \infty-\infty,
  2. 0\cdot\infty, \quad\quad \infty\cdot 0,
  3. \frac{\infty}{\infty},
  4. \frac{0}{0}


TételVégtelen határérték és alapműveletek – Ha az f és g komplex függvényeknek létezik határértékük az \scriptstyle{u\in \overline{\mathbf{C}}} helyen, az f * g alapművelettl elkészített függvény értelmezési tartományának torlódási pontja u és a limu f * limu g alapművelet elvégezhető, akkor az f * g függvénynek is van határértéke u-ban és ez:

 \lim\limits_u(f\mbox{*}g)=\lim\limits_u f\,\mbox{*}\, \lim\limits_u g \,

Ezenkívül a határozatlan esetekben, amikor a határértékekkel végzett műveletek nem értelmezettek, az alapműveletekkel elkészített függvények határértékeire nem adható általános képlet (mert alkalmasan választott esetekben máshoz és máshoz tartanak).

A bizonyításról. Ennek a tételnek a bizonyítása minden nehézség nélkül elvégezhető vagy az R2-beli sorozatokra vonatkozó átviteli elv vagy a komponensfüggvények határértékére történő hivatkozás útján. Minenekelőtt azt kell szem előtt tartanunk, hogy a végtelenhez való tartás, a függvény abszolútértékének plusz végtelenhez tartását jelenti:

\exists\lim\limits_{z_0}f=\infty \quad\Longleftrightarrow \quad\exists\lim\limits_{z_0}|f|=+\infty

Feladat. Adjuk példákat arra, hogy a határozatlan alakú határértékeket valóban nem lehet definiálni.

Nézzük a 0-ban az alábbi függvényeket:

\frac{2}{z}\;-\;\frac{1}{z}=\frac{1}{z}\quad\to \infty miközben (\frac{1}{z}+2)\;-\;\frac{1}{z}=2\quad\to 2

\frac{1}{z}\;\cdot z=1\quad\to 1 miközben \frac{2}{z}\;\cdot\;z=2\quad\to 2

\frac{1}{z}/\frac{1}{z}=1\quad\to 1 miközben \frac{2}{z}/\frac{1}{z}=2\quad\to 2

\frac{z}{z}=1\quad\to 1 miközben \frac{2z}{z}=2\quad\to 2

Feladat. Számítsuk ki az alábbi határértékeket, ha léteznek!

  1. \lim\limits_{z\to 0}\frac{\mathrm{Im}(z)}{z},
  2. \lim\limits_{z\to i}\frac{z-i}{z^2+1},
  3. \lim\limits_{z\to 1}\frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i},
  4. \lim\limits_{z\to 0}\frac{1}{z}-\frac{2}{\overline{z}},
  5. \lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i},

Megoldás. 1. nemnulla z-re:

\frac{\mathrm{Im}(z)}{z}=\frac{\mathrm{Im}(z)\overline{z}}{z\overline{z}}=\frac{yx-y^2\mathrm{i}}{x^2+y^2}

de ekkor például az első komponensfüggvény x = 0 felől közelítve 0, míg az x = y-felől:1/2, azaz nem létezik az első komponensnek a (0,0)-ban határértéke, azaz a komplex függvénynek sem.

2. \frac{z-i}{z^2+1}=\frac{z-i}{(z+i)(z-i)}=\frac{1}{z+i}\quad\longrightarrow_{z\to i}\quad\infty

3. \frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i}=\frac{ \frac{1+iz-i}{z-1} }{ \frac{1-iz^2+i}{z^2-1} }=\frac{1+iz-i}{z-1}\cdot \frac{(z+1)(z-1)}{1-iz^2+i}

\left.\frac{iz+1-i}{-iz^2+i+1}(z+1)\right|_1=\frac{1}{1}\cdot 1

4. \frac{1}{z}-\frac{2}{\overline{z}}=\frac{\overline{z}-2z}{z\overline{z}} csak a valós részt nézve:

\left|\frac{-x}{x^2+y^2}\right|

az (x,y)=(x,0) esetben a (0,0)-hoz tartva: végtelen, de (x,y)=(0,y), akkor 0. tehát nincs határérték.

5. \lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i}=\left(\frac{\infty}{0}\right)=\infty.


Feladat. Adjuk meg minden z0C számra az alábbi függvény határértékét!

  1. f(z)=\frac{z}{\overline{z}-z},
  2. f(z)=\frac{z^2}{\overline{z}z-1},

1. \mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}\ne z\}

Folytonos az értelmezési tartományában. A határon:

\frac{z}{\overline{z}-z}=\frac{x+iy}{2iy}\,

z0 ≠ 0 esetén

\left|\frac{x+iy}{2iy}\right|\geq \frac{|z_0|/2}{2|y|}\to \infty

z0 = 0 esetén:

\frac{x+iy}{2iy}=\frac{1}{2}-i\frac{x}{2y}

ismert, hogy nincs határérték.

2. \mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}z\ne 1\}

Az egységkör pontjaitól különbözőkre folytonos, az egységkörön a végtelen, a végtelenben pedig nincs határérték. Ugyanis:

|f(z)|=\frac{|z|^2}{|\overline{z}z-1|},

így az egységkörön a számláló az 1-hez, a nevező a nullához tart. A végtelenben pedig t valóssal:

\lim\limits_{t\to +\infty} f(t+0.i)=\lim\limits_{t\to +\infty} \frac{t^2}{t^2-1}= 1\,
\lim\limits_{t\to +\infty} f(t.i)=\lim\limits_{t\to +\infty} \frac{-t^2}{t^2-1}= -1\,

Differenciálhatóság

R-differenciálhatóság

Legyen f : C\to C komplex függvény. Ekkor f azonosítható az

f\equiv \begin{pmatrix}u\\v\end{pmatrix}:\mathbf{R}^2\supset\to\mathbf{R}^2

vektorértékű kétváltozós függvénnyel az

f(z)=f(x+iy)\equiv u(x,y)+iv(x,y)\,

szerint (itt u és v kétváltozós valós függvények, rendre az f valós és képzetes része).

f abban az értelemen R-differenciálható, ahogy az (u,v):R2 \supset\to R2 függvény differenciálható, azaz

Definíció -- Valós deriválhatóság -- Legyen g:R2 \supset\to R2, x0∈IntDom(g). Ekkor a g differenciálható az x0 pontban, ha létezik olyan A: R2 \to R2 lineáris leképezés, melyre

\exists \lim_{x\to x_0}\frac{f(x)-f(x_0)-A(x-x_0)}{||x-x_0||}=0

ahol ||.|| tetszőleges norma (például az ||.||2=|.| komplex abszolútérték) R2-ben.

Ekkor a fenti A lineáris leképezés egyértelmű és a jelölése: dg(x0). Azt, hogy a g valósan differenciálható (totálisan differenciálható) az x0-ban, még úgy is jelöljük, hogy

g\in \mathrm{Diff}_{\mathbf{R}}(x_0).

A df(x0,y0) leképezés sztenderd bázisban felírt koordinátamátrixát nevezzük Jacobi-mátrixnak, mely a következő. Ha f komponensfüggvényei: (x,y) \mapsto f(x,y) = (u(x,y),v(x,y)), akkor

\mathrm{J}^g(x_0,y_0)=[\mathrm{d}f(x_0,y_0)]=\begin{bmatrix}\partial_x u & \partial_y u \\\partial_x v & \partial_y v\end{bmatrix}(x_0,y_0)

És persze, ha f differenciálható (értsd: totálisan differenciálhat, vagy valósan differenciálható), akkor parciálisan is deriválható, azaz a komponensfüggvényeinek az adott pontban léteznek a parciális deriváltjai, tehát felírható a Jacobi-mátrix.

Példák

1. Legyen wC tetszőlegesen rögzített és legyen

f(z)=w\cdot z

Ekkor a komponensfüggvények (f valós és képzetes része):

f(z)=f(x+iy)=(w_1+iw_2)\cdot (x+iy)=w_1x-w_2y+i(w_1y+w_2x)\equiv \begin{bmatrix}
w_1x-w_2y\\
w_1y+w_2x
\end{bmatrix}

És a derivált:

\mathrm{J}^{f}(z)=\begin{bmatrix}
w_1 & -w_2\\
w_2 & w_1
\end{bmatrix}

Vegyük észre, hogy az imént kijött derivált éppen a w komplex szám mártixreprezentációja, hiszen általában egy z = a +' 'bi komplex szám mátrixreprezentációja:

[z]=\begin{bmatrix}
a & -b\\
b & a
\end{bmatrix}

a valós rész a főátlóban, a képzetes rész a -, + -szal a mellékátlóban van. Tehát:

\mathrm{J}^{f}(z)\in \mathbf{C}

2.

f(z) = z2

Legyen z = x + i y. Ekkor z2 = x2 - y2 +i(2xy)

\mathrm{J}_\mathbf{R}^f(x,y)=\begin{pmatrix}
2x & -2y\\
2y & 2x
\end{pmatrix}

azaz amit kaptunk, pont a 2z szám mátrixreprezentációja:

\mathrm{J}^{f}(z)=[2z]\in\mathbf{C}

3. Számítsuk ki az \scriptstyle{f(z)=\overline{z}} R-differenciálját!

Ha z = x + i y, akkor \scriptstyle{\overline{z}=x-\mathrm{i}y}, így:

\mathrm{J}^{\overline{z}}_{\mathbf{R}}(z)=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\not\in\mathbf{C}

azaz nem mátrixreprezentáció alakú a Jacobi-mátrix. Ám, azt jegyezzük meg, hogy az iménti leképezés lineáris (ez az x tengelyre vonatkozó tükrözés), tehát folytonos, sőt totálisan (végtelenszer) differenciálható és a valós deriváltja pont saját maga:

\mathrm{d}f(x,y)=f\,

csak nem komplex számot reprezentál a Jacobi-mátrix.

C-differenciálhatóság

A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől

(w\cdot z)'=w\in \mathbf{C}
(z^2)'=2z\in \mathbf{C}

mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a

(\overline{z})'=(\begin{smallmatrix} 1 & 0\\0 & -1\end{smallmatrix})\notin \mathbf{C}

mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.

Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Jelölése: f'(z0).

Azt, hogy az f a z0-ban komplex deriválható még úgy is jelöljük, hogy

f\in \mathrm{Diff}_{\mathbf{C}}(z_0).

Pontbeli deriváltra példa a következő.

Példa. Milyen n egész számokra deriválható a 0-ban az alábbi függvény?

f(z)=\begin{cases}\overline{z}\cdot z^n, & z\ne 0\\
0, & z=0
\end{cases}

Mo. Ha n>0, akkor a különbségi hányados:

\frac{\overline{z}\cdot z^n-0}{z-0}=\frac{\overline{z}\cdot z^n}{z}=\overline{z}\cdot z^{n-1}\to 0 ha z \to 0.

Ha n = 0, akkor

\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=e^{i(-2\varphi)}

aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).

Ha n < 0, akkor

\frac{\overline{z}z^n-0}{z-0}=\frac{\overline{z}}{z^{-n+1}}=\frac{\overline{z}}{z}\frac{1}{z^{-n}}

ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.

Tehát n > 0-ra a függvény komplex deriválható a 0-ban, más n < 1-re nem deriválható.

Tétel. - A komplex differenciálhatóság jellemzése - Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:

1) f\in \mathrm{Diff}_{\mathbf{C}}(z_0)
2) f\in \mathrm{Diff}_{\mathbf{R}}(x_0,y_0) és [\mathrm{d}f(x_0,y_0)]\in\mathbf{C}.

Bizonyítás. Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény és w' komplex szám. Tekintsük a következő határértéket:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-w\cdot (z-z_0)}{|z-z_0|}=0

Ha ez létezik, akkor ekvivalens a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right|=0

Azaz

\lim\limits_{z\to z_0}\left|\frac{z-z_0}{|z-z_0|}\left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right|=0

Itt (z-z0)/|z-z0| a komplex egységkörön "futó" függvény, ezért a fenti ekvivalnes a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-w\right|=0

Ami viszont ugyanakkor igaz mint:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol w a komplex derivált, akkor azt kapjuk, hogy a w mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z0)]=[w].

Másfelől, ha f valósan deriválható és a deriváltja a w komplex számot reprezentálja, akkor komplexen is deriválható.

Cauchy--Riemann-egyenletek A fenti tételben a [df(z)] ∈ C feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha f = u + iv és z = x +iy, akkor

\begin{cases}
\partial_xu=\partial_yv\\
\partial_yu=-\partial_x v
\end{cases}

Komplex deriváltfüggvény Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:

f'(z)=\partial_x u+\mathrm{i}\partial_xv=\partial_y v+\mathrm{i}\partial_xv=\partial_xu-\mathrm{i}\partial_yu=\partial_y v-\mathrm{i}\partial_yu

Definíció - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.

Feladat. Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?

Feladat. Legyen f(x + iy) = x2 + iy3. Hol komplex deriválható és hol reguláris f?

Személyes eszközök