Matematika A3a 2008/6. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(R-differenciálhatóság)
(R-differenciálhatóság)
16. sor: 16. sor:
  
 
Ekkor a fenti ''A'' lineáris leképezés egyértelmű és a jelölése: d''g''(''x''<sub>0</sub>).
 
Ekkor a fenti ''A'' lineáris leképezés egyértelmű és a jelölése: d''g''(''x''<sub>0</sub>).
 +
 +
A d''f''(''x''<sub>0</sub>,''y''<sub>0</sub>) leképezés sztenderd bázisban felírt koordinátamátrixát nevezzük Jacobi-mátrixnak, mely a következő. Ha f komponensfüggvényei: (x,y) <math>\mapsto</math> f(x,y) = (u(x,y),v(x,y)), akkor
 +
:<math>\mathrm{J}^g(x_0)=[\mathrm{d}f(x_0,y_0)]=\begin{bmatrix}\partial_x u & \parial_y u \\\partial_x v & \parial_y v\end{bmatrix}(x_0,y_0) <math>
  
 
Ekkor például a hozzáadás, mint affin függvény  '''R'''-differenciálható, és '''R'''-differenciálja az identitás:
 
Ekkor például a hozzáadás, mint affin függvény  '''R'''-differenciálható, és '''R'''-differenciálja az identitás:

A lap 2012. november 2., 19:33-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Differenciálhatóság

R-differenciálhatóság

Legyen f : C\to C komplex függvény. Ekkor f azonosítható az

f\equiv \begin{pmatrix}u\\v\end{pmatrix}:\mathbf{R}^2\supset\to\mathbf{R}^2

vektorértékű kétváltozós függvénnyel az

f(z)=f(x+iy)\equiv u(x,y)+iv(x,y)\,

szerint (itt u és v kétváltozós valós függvények, rendre az f valós és képzetes része).

f abban az értelemen R-differenciálható, ahogy az (u,v):R2 \supset\to R2 függvény differenciálható, azaz

Definíció -- Valós deriválhatóság -- Legyen g:R2 \supset\to R2, x0∈IntDom(g). Ekkor a g differenciálható az x0 pontban, ha létezik olyan A: R2 \to R2 lineáris leképezés, melyre

\exists \lim_{x\to x_0}\frac{f(x)-f(x_0)-A(x-x_0)}{||x-x_0||}=0

ahol ||.|| tetszőleges norma (például az ||.||2=|.| komplex abszolútérték) R2-ben.

Ekkor a fenti A lineáris leképezés egyértelmű és a jelölése: dg(x0).

A df(x0,y0) leképezés sztenderd bázisban felírt koordinátamátrixát nevezzük Jacobi-mátrixnak, mely a következő. Ha f komponensfüggvényei: (x,y) \mapsto f(x,y) = (u(x,y),v(x,y)), akkor

Értelmezés sikertelen (ismeretlen függvény\parial): \mathrm{J}^g(x_0)=[\mathrm{d}f(x_0,y_0)]=\begin{bmatrix}\partial_x u & \parial_y u \\\partial_x v & \parial_y v\end{bmatrix}(x_0,y_0) <math> Ekkor például a hozzáadás, mint affin függvény '''R'''-differenciálható, és '''R'''-differenciálja az identitás: :<math>a_w:z\mapsto w+ z\,
akkor \mathrm{d}_\mathbf{R}(a_w)z=z

A komplex számmal szorzás R-differenciálját közvetlenül a definíciójából számíthatjuk ki:

m_w:z\mapsto w\cdot z\, akkor \mathrm{J}_\mathbf{R}^{a_w}(z)=\begin{pmatrix}
w_1 & -w_2\\
w_2 & w_1
\end{pmatrix}

Rendkívül érdekes észrevétel tanúi lehetünk ekkor. z \mapsto w\cdot z R-deriváltja maga w komplex számnak megfelelő mátrix, azaz

\mathrm{J}_\mathbf{R}^{a_w}(z)=w

ha mátrixreprezentációt veszünk. Sőt, visszanézve ez az összeadásra is igaz:

\mathrm{J}_\mathbf{R}^{a_w}(z)=\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}

Feladat. Számítsuk ki az f(z) = z2 R-differenciálját!

Legyen z = x + i y. Ekkor z2 = x2 - y2 +i(2xy)

\mathrm{J}_\mathbf{R}^f(x,y)=\begin{pmatrix}
2x & -2y\\
2y & 2x
\end{pmatrix}=2z


Feladat. Számítsuk ki az \scriptstyle{f(z)=\overline{z}} R-differenciálját!


Ha z = x + i y, akkor \scriptstyle{\overline{z}=x-\mathrm{i}y}, így:

\mathrm{J}^{\overline{z}}_{\mathbf{R}}(z)=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\not\in\mathbf{C}

És ezzel már ki is mondhatjuk a Cauchy-Riemann-féle szükséges feltételt:

Annak a szükséges feltétele, hogy az f:R2 \to R2 R-differenciálható függvény differenciálja egy komplex szám mátrixreprezentációja legyen, az, hogy:
\partial_1 f_1=\partial_2 f_2 és \partial_1 f_2=-\partial_2 f_1

C-differenciálhatóság

A fenti példa motiválja a C-differenciálhatóság fogalmát. Legyen a szituáció az előbbi, azaz legyen f(z) totálisan differenciálható (mint kétváltozós függvény) a z0 pontban és a Jacobi-mátrixa ott legyen a wC szám mátrixreprezentációja. Ekkor

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-w\cdot (z-z_0)}{|z-z_0|}=0

Itt w\cdot(z-z0) egyfelől a mátrixszorzás, másfelől a komplex szorzás. Ekkor:

\lim\limits_{z\to z_0}\left(\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right)=0

Ha h(z)=(z-z0)/|z-z0|, ami a komplex "egységgömbön" "futó" függvény, akkor a komplex szorzás tulajdonságai miatt:

\lim\limits_{z\to z_0}\left(h(z)\cdot \left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right)=0

Innen a következő gondolatunk támadhat. Teljesen az egyváltozós valós derivált tulajdonságait mutató deriváltfogalmat kapunk, ha bevezetődne a következő


Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Most gondoljuk végig, hogy milyen kapcsolatban van az R'- és a C-deriválhatóság. Ha a fenti gondolamenetet felfelé nézzük, akkor a h(z) korlátossága miatt a "korlátos szor nullához" tartó függvényt kapunk, így a szorzat határértéke 0. Persze ehhez kellene a "korlátos szor nullához tartó" lemma komplex szorzásra.

Ha lefelé gondolkodunk, akkor indirekten kell eljárnunk. Tegyük fel, hogy a második tényező nem nulla határértékű. Amikor nem létezik, vagy nem az adott szám a határérték, akkor "cáfoló" sorozatot szoktunk megadni. Az átviteli elv miatt létezik olyan z(n) konvergens komplex sorozat, mely nem a 0-hoz tart. De a h(z(n)) ekkor az egységkörön van, így a szorzat biztosan "elerüli a nullát" (az abszolút értéke nem a 0-hoz tart). Következésképpen:

Tétel. A definícióbeli f pontosan akkor komplex differenciálható, ha differenciálható és a deriváltja komplex szám (mátrix reprezentációja). Továbbá f pontosan akkor komplex differenciálható, ha differenciálható és a parciális deriváltjai teljesítik a Cauchy-Riemann-egyenleteket.

Feladat. Komplex deriváljuk az f(z) = zn függvényt!

Feladat. Komplex deriválható-e: \scriptstyle{f(z)=z\cdot\overline{z}}, vagy a \scriptstyle{f(z)=z^2\cdot\overline{z}}?

Feladat. Igazoljuk, hogy ha f korlátos komplex függvény a DC halmazon és limwg = 0, akkor limw fg = 0. (w ∈ int D).


Elemi függvények

Hatványfüggvények

A

w=z^n\,

típusú függvények komplex hatványfüggvények. nZ esetén, komplex deriváltjuk kiszámítható, n ≠ -1 esetben komplex primitív függvényük is van a következő értelemben:

Mivel

(z^n)'=nz^{n-1}\,

ezért n ≠ -1 esetén az az F(z) függvény, melyre  \scriptstyle{F'(z)=z^n} nem más, mint

F(z)=\frac{z^{n+1}}{n+1}+C\,

ahol C komplex konstans. n ≠ -1-re nincs primitív függvénye, mert a logaritmus nem egyértékű a komplex számok között.

Komplex vonalintegrál értelmezhető a G: [a,b] \to C folytonos függvény, mint görbe esetén azzal a különlegességgel, hogy a szorzás a komplex szorzás:

\int\limits_{G}f(z)\,\mathrm{d}z\,=_{\mathrm{def}}\lim\limits_{n \to \infty}\sum\limits_{i=1}^nf(z_i)\cdot\Delta z_i

Feltéve persze, hogy létezik és véges. Itt zi mindig a G görbe valamely pontját jelöli, amit az [a,b] egy felosztásának osztópontjainak G általi képeiből kapunk.

Ekkor fennáll a komplex Newton-Leibniz-formula. Ha a G görbe olyan nyílt halmazban halad, melyben az f-nek van primitív függvénye (egyértékű függvénye!) és f komplex integrálható, akkor z1 és z2 a végpontok esetén (a és b képe), a komplex integrál kiszámítható így:

F(z_2)-F(z_1)=\int\limits_{G}f(z)\,\mathrm{d}z\,

Ha a görbe belép az f értelmezési tartományának olyan részére, melyben a függvénynek nincs egyértelmű primitív függvénye, akkor az integrál értéke függhet a G úttól.

1. Feladat. Legyen G a 3 középpontú, 1 sugarú kör felső félköre (pozitív irányítással). Számítsuk ki a

\int\limits_{G}3z^2+1\,\mathrm{d}z\,

integrált.

2. Feladat. Legyen G az origó körüli 2 sugarú kör vonal. Mennyi az

a) \int\limits_{G}\frac{1}{z^2}\,\mathrm{d}z\, és a b) \int\limits_{G}\frac{z+1}{z}\,\mathrm{d}z\,

integrál.

A hatványfüggvények inverzei szintén nem egyértékű függvények.

Exponenciális függvény


e^z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^n}{n!}\,

Ebbőkkiderül az exponenciális függvény sok tulajdonsága. Például, ha z = x + iy, akkor

e^{x+iy}=e^x\cdot e^{iy}=e^x\cdot (\cos y + i\sin y)\,

Ebből rögtön következik, hogy komplex exponenciális függvény periodikus, periódusa a p = 2πi:

e^{z+2\pi i}=e^z\cdot e^{2\pi i}=e^z\cdot e^0\cdot (\cos 2\pi + i\sin 2\pi)=e^z(1+0i)\,

3. Feladat. Oldjuk meg az

e^z=1+i\;

egyenletet!

Írjuk át 1+i-t exponenciális alakba:

1+i=e^{\ln \sqrt{2}}\cdot e^{i\frac{\pi}{4}}\,

így

z=\ln\sqrt{2} +i\frac{\pi}{4}+2\pi i\,

4. Feladat. Oldjuk meg az

e^{iz}+ie^{-4iz}=0\,

egyenletet!

Komplex logaritmus és a reciprok integrálja

Tekintsük a

w=e^z\,

hozzárendelést! Ha w-t exponenciális alakban írjuk, megfeleltethetjük egymásnak a z algebrai alakját w trigonometrikus alakjával:

w=re^{i\varphi}=e^{x+iy}=e^x\cdot e^{iy}\,

azaz

r=e^x\, és \varphi= y\,

Ebből is látható, hogy a fordított leképezés végtelen sok értkű, hiszen ha y1 = 2π + y, akkor w(x+iy)= w(x+iy1 ). Ekkor a Riemann-felület egy végtelen sok Riemann-levélből áll.

Feladat. Számítsuk ki az alábbi integrálokat:

\int\limits_{G_1}\frac{1}{z}\,\mathrm{d}x
\int\limits_{G_2}\frac{1}{z}\,\mathrm{d}x

ahol G1 az egységkör a + irányban i-től -i-ig, G2 az egységkör a - irányban i-től -i-ig.

\int\limits_{i,\,(G_1)}^{-i}\frac{1}{z}\mathrm{d}z=[\mathrm{Log}(z)]_{i}^-i=\mathrm{Log}(e^{i\frac{3}{2}\pi})-\mathrm{Log}(e^{\frac{1}{2}\pi})=i\pi\,

ahol Log a logaritmus főrésze, hisz a görbe a egy Rieman-levélen belül marad, míg

\int\limits_{i,\,(G_2)}^{-i}\frac{1}{z}\mathrm{d}z=[\mathrm{Log}(z)]_{i}^-i=\mathrm{Log}(e^{-i\frac{1}{2}\pi})-\mathrm{Log}(e^{\frac{1}{2}\pi})=-i\pi\,

mivel itt áthalad a görbe a következő Riemann-levélre.

Más számítással:

\int\limits_{i,\,(G_1)}^{-i}\frac{1}{z}\mathrm{d}z=\int\limits_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}\frac{1}{z(t)}\cdot\frac{\mathrm{d}z(t)}{\mathrm{d}t}\,\mathrm{d}t=\int\limits_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}e^{-it}ie^{it}\mathrm{d}t=[it]_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}

Trigonometikus függvények

\sin z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^{2n+1}}{(2n+1)!}\,
\cos z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^{2n}}{(2n)!}\,

Világos, hogy valós φ-re:

e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)\,

A hiperbolikus függvényekhez hasonlóan a trigonometrikus függvények is előállnak de a komplex exponenciális segítségével:

\sin z=\frac{e^{iz}-e^{-iz}}{2i}
\cos z=\frac{e^{iz}+e^{-iz}}{2}

5. Feladat. Igazoljuk, hogy fennáll

\sin^2 z+ \cos^2z = 1\,

6. Feladat. Oldjuk meg az

\sin 4z=0\,

egyenletet!

Hiperbolikus függvények

\mathrm{sh}\, z=\frac{e^{z}-e^{-z}}{2}
\mathrm{ch}\, z=\frac{e^{z}+e^{-z}}{2}

7. Feladat. Határozzuk meg az w = sh(iz) függvény valós és képzetes részét!

Mo.

\mathrm{sh}\, iz=\frac{e^{iz}-e^{-iz}}{2}

8. Feladat. G az egységkör. Számítsuk ki

\int\limits_{(G)}\frac{e^z}{z}\mathrm{d}z\,
\int\limits_{(G)}\frac{\sin(z)}{z^4}\mathrm{d}z\,

Mo.

\int\limits_{(G)}\frac{1}{z}+1+\frac{1}{2}z+...\mathrm{d}z\,=2\pi i
\int\limits_{(G)}\frac{1}{z^3}-\frac{1}{2z}+\frac{1}{4!}z+...\mathrm{d}z\,=-\pi i
Személyes eszközök