Matematika A3a 2008/6. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Komplex sorozatok)
(Komplex sorozatok)
97. sor: 97. sor:
  
 
''Mo.'' Van neki, ha Δ=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.
 
''Mo.'' Van neki, ha Δ=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.
 +
 +
==Komplex integrál==
 +
 +
===Görbék a komplex síkon===
 +
 +
Ha ''G'':[''a'',''b'']<math>\to</math>'''C''', ''t''<math>\mapsto</math>''z''(''t'') folytonosan differenciálható, akkor ''G''-t görbének nevezzük. (Esetleg a folytonos, véges sok helyen nem folytonosan differenciálható előbbi ''G''-ket is görbéknek nevezzük.) A ''G'' görbe ''egyszerű'', ha nem metszi át saját magát, azaz minden <math>t_1</math>, <math>t_2</math>-re, ha <math>z(t_1)=z(t_2)</math>, akkor <math>t_1=t_2</math>. ''G'' zárt, ha <math>z(a)=z(b)</math>. A görbe ''t''-beli irányvektorán a
 +
:<math>\dot{z}(t)=\dot{x}(t)+\mathrm{i}\dot{y}(t)</math>
 +
komplex számot értjük.
 +
 +
====Példák====
 +
'''1.''' Legyen ''t''&isin;[a,b]-re ''z''(''t'') = ''x''(''t'') + i''y''(''t'') olyan, hogy <math>x(t)=x_0+w_1t</math> és <math>y(t)=y_0+w_2t</math>, azaz <math>z(t)=z_0+w t</math>. Ekkor ''z''(''t'') egy egyenes szakasz.
 +
 +
És ekkor:
 +
:<math>\dot{z}(t)=w</math>
 +
'''2.''' Az origó középpontú R sugarú kör:
 +
:<math>z(t)=Re^{\mathrm{i}t}</math> ''t''&isin;[0,2&pi;]
 +
És ekkor
 +
:<math>\dot{z}(t)=R\mathrm{i}e^{\mathrm{i}t}</math>
 +
hiszen
 +
:<math>\dot{z}(t)=R\dot{\cos(t)+\mathrm{i}\sin(t)}=-R\sin(t)+\mathrm{i}R\cos(t)=\mathrm{i}(R\mathrm{i}\sin(t)+R\cos(t))</math>
 +
===Komplex vonalmenti integrál===
 +
'''Definíció.''' Ha ''G'':[a,b]<math>\to</math>'''C''' görbe és f olyan komplex függvény, melyre Ran(G)&sube;Dom(f), és f folytonos, akkor belátható, hogy létezik a
 +
 +
:<math>\begin{matrix}
 +
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 +
& n\to \infty & \\
 +
& \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 +
& |\Delta z_i|\to 0 & 
 +
\end{matrix}</math>
 +
határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok <math>z_i</math> pontot, melyek a szigorúan monoton (<math>t_i</math>)-khez tartoznak a <math>z_i=z(t_i)</math> definícióval. Ezen <math>[z(t_i),z(t_{i+1})]</math> görbeszakaszokon belül felvettük tetszőlegesen a &zeta;<sub>i</sub> közbülső pontokat, és a &Delta;z<sub>i</sub>=<math>[z(t_i),z(t_{i+1})]</math> szakaszokkal elkészítettük az f(&zeta;<sub>i</sub>)&Delta;z<sub>i</sub> komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény ''G''-re vett komplex integrálja.
 +
 +
'''Visszavezetés valós vonalintegrálra.'''
 +
Az integrál kifejezhető vonalintegrállal. Ha ugyanis f= u + iv, akkor az f=(u,v) vektormezőnek olyan differenciálforma szerinti integrálja a komplex pályamenti integrál, mely az f=(u,v) vektor és a dz=(dx,dy) infinitezimális elmozdulásvektor komplex szorzásaként jön létre:
 +
:<math>\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x</math>
 +
Ebben a felírásban az (u,-v) és (v,u) olyan segédvektormezők, melyek vonalintegráljai adják meg a komplex integrál valós és képzetes részét. Tehát az integrált a 
 +
:<math>\mathbf{P}=\begin{pmatrix}u\\-v\end{pmatrix}</math> és <math>\mathbf{Q}=\begin{pmatrix}v\\u\end{pmatrix}</math>
 +
segédvektormezők síkbeli '''vonalintegráljai''', vagy a
 +
:<math>\mathbf{P}'=\begin{pmatrix}-v\\-u\end{pmatrix}</math> és <math>\mathbf{Q}'=\begin{pmatrix}u\\-v\end{pmatrix}</math>
 +
segédvektormezők síkbeli '''felületi integráljai''' szolgáltatják.
 +
 +
Itt érdemes feleleveníteni, hogy az '''S''' = (<math>s_1</math>, <math>s_2</math>) síkvektormező felületi integrálja nem más, mint a (<math>-s_2</math>, <math>s_1</math>) vektormező vonalintegrálja (a megfelelő irányítással).
 +
 +
:<math>\int\limits_{F} \mathbf{S}\,\mathrm{d}\mathbf{f}=\int\limits_{''F''} s_1 \mathrm{d}y-s_2\mathrm{d}x</math>
 +
megfelelő módon irányítva az F felületet, ill ennek "F" görbe mivoltát. 
 +
 +
(Azaz a s_2dx - s_1 dy differenciálforma integrálja. ''Differenciálforma'' -- nemes egyszerűséggel -- egy olyan kifejezése, ahol dx, dy, dz-k és egy vektormező komponensei vannak összeszorozva-összeadva.)
 +
 +
'''Kiszámítási formula.''' Belátható, hogy a fenti integrál a következőkkel egyenlő:
 +
:<math>
 +
\int\limits_{G}f(z)\mathrm{d}z=\int\limits_{a}^b f(z(t))\cdot \dot{z}(t)\,\mathrm{d}t</math>
 +
===Példa===
 +
'''1.''' Legyen ''G'' a komplex egységkör pozitívan irányítva.
 +
:<math>\int\limits_{|z|=1}\frac{1}{z}\mathrm{d}z=\int\limits_{0}^{2\pi} \frac{1}{e^{\mathrm{i}t}}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{2\pi} \mathrm{i}\,\mathrm{d}t=2\pi\mathrm{i}</math>
 +
Ahol a valós Newton--Leibniz-formulát alkalmaztuk a komponensfüggvényekre.
 +
 +
'''2.''' Legyen ''G'' a z(t)=(1+2i)t, ahol t&isin;[0,1].
 +
:<math>\int\limits_{G}\overline{z}\mathrm{d}z=\int\limits_{0}^{1} (1-2\mathrm{i})t\cdot (1+2\mathrm{i})\,\mathrm{d}t=\int\limits_{0}^{1}5t\,\mathrm{d}t=\frac{5}{2}</math>
 +
 +
'''3.''' Legyen ''G'' a komplex egységkör felső fele, pozitívan irányítva.
 +
:<math>\int\limits_{|z|=1,\mathrm{Im}(z)\geq 0}\overline{z}^2\mathrm{d}z=\int\limits_{0}^{\pi}e^{-2\mathrm{i}t}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{\pi}e^{-\mathrm{i}t}\,\mathrm{d}t=1-(-1)=2</math>
 +
 +
===Komplex Newton--Leibniz-formula===
 +
Ha az f komplex függvény, olyan, hogy van olyan komplex differenciálható F, melyre F'=f, akkor azt mondjuk, hogy a F az f primitív függvénye.
 +
 +
'''Komplex Newton--Leibniz-formula.''' Ha a nyílt halmazon értelmezett f komplex függvénynek primitív függvénye az F és f folytonos, akkor minden az f értelmezési tartományában haladó ''G'':[a,b]<math>\to</math>'''C''' görbére:
 +
:<math>\int\limits_{G}f(z)\,\mathrm{d}z=F(b)-F(a)</math>
 +
 +
Például:
 +
 +
'''4.''' Legyen <math>f(z)=\frac{1}{z^2}</math>. Mi az egységkörre az integrálja?
 +
:<math>F(z)=-\frac{1}{z}</math>
 +
primitívfüggvénye f-nek, ezért
 +
:<math>\int\limits_{|z|=1}\frac{1}{z^2}\,\mathrm{d}z=0</math>
 +
hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.
 +
 +
 +
 +
==Cirkulációmentesség==
 +
'''Tétel.''' Ha a ''D'' tartományon értelmezett ''f'' függvénynek van primitív függvénye, akkor a körintegrál minden a ''D''-ben haladó folytonosan differenciálható (ill. ilyenek véges összekapcsolásain) zárt görbén eltűnik:
 +
:<math>\oint f=0\,</math>
 +
 +
További információhoz akkor jutunk, ha a többváltozós analízis cirkuálciómentességi feltételeit vizsgáljuk. Ehhez a vissza kell vezetni a komplex integrált a vonalintegrálra.
 +
 +
Legyen ''f''(''z'') = ''f''(''x'',''y'') = ''u''(''x'',''y'') + i''v''(''x'',''y''). Ekkor ''f'' felfogható '''R'''<sup>2</sup> <math>\supset\!\to</math> '''R'''<sup>2</sup> függvényként, melynek vonalintegrálja a
 +
:<math>G:z(t)\equiv\mathbf{r}(t)=(x(t),y(t))\,</math>
 +
vonal mentén:
 +
:<math>\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x</math>
 +
amiben az
 +
:<math>\mathbf{v}=\begin{pmatrix}u\\-v\end{pmatrix}</math> és <math>\mathbf{w}=\begin{pmatrix}v\\u\end{pmatrix}</math>
 +
vektorterek integráljai szerepelnek.
 +
 +
Vagy kétdimenziós felületi integrálként:
 +
 +
:<math>\mathbf{v}'=\begin{pmatrix}-v\\-u\end{pmatrix}</math> és <math>\mathbf{w}'=\begin{pmatrix}u\\-v\end{pmatrix}</math>
 +
 +
Ugyanis a komplex vonalintegrált síkbeli felületi integrállá lehet alakítani:
 +
:<math>\int \mathbf{v}\mathrm{d}\mathbf{A}=\int \mathbf{v}\times\mathrm{d}\mathbf{r}=\int v_1 \mathrm{d}y-v_2\mathrm{d}x</math>
 +
 +
 +
===Gauss-tétel===
 +
Lássuk először Gauss-tételle, hogyan következtethetünk a körintegrál eltűnésére.
 +
 +
'''Gauss-tétel''' ('''R'''<sup>3</sup>-ra) Legyen '''v''' nyílt halmazon értelmezett C<sup>1</sup>-függvény, ''V'' egyszeresen összefüggő, mérhető térrész és legyen ennek &part;''V'' határa kifelé irányított felület. Ha ''V'' a határával együtt Dom('''v''')-ben van, akkor
 +
:<math>\oint\limits_{\partial V} \mathbf{v}\;\mathrm{d}\mathbf{A}=\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V</math>
 +
 +
Az itt szereplő fogalmak közül néhányról beszélnünk kell.
 +
 +
'''Felület.''' Legyenek a &phi;<sup>i</sup>:D<sub>i</sub> <math>\to</math> '''R'''<sup>3</sup> függvények folytonosan differenciálhatóak és injektívek int(''D''<sub>i</sub>)-n, melyek mérhető tarományok '''R'''<sup>2</sup>-ben. Ha a képeik egymásba nem nyúlók, azaz int(&phi;<sub>i</sub>(''D''<sub>i</sub>)) &cap; int(&phi;<sub>j</sub>(''D''<sub>j</sub>)) üres, ha ''i'' &ne; ''j'', és a képek uniója összefüggő halmaz, akkor U Ran(&phi;<sup>i</sup>)-t előállítottuk paraméteres felületként.
 +
 +
Példaként említhetjük a kúp paraméterezését:
 +
 +
:<math>\mathbf{r}_1(\varphi, h)=\left\{\begin{matrix} h\sin\vartheta\cos \varphi\\ h\sin\vartheta\sin\varphi\\ h\end{matrix}\right.</math>, ha &phi; &isin; [0,2&pi;] és ''h'' &isin; [0,''H'']
 +
:<math>\mathbf{r}_2(\varphi, h)=\left\{\begin{matrix}r\cos\varphi\\r\sin\varphi \\ H\end{matrix}\right.</math>, ha &phi; &isin; [0,2&pi;] és ''r'' &isin; [0,''R'']
 +
ahol H a kúp magassága, R az alapkörsugara, &theta; a félkúpszöge (z a tengelye, O a csúcsa). Tehát itt a paramétertartományok [0,2&pi;] &times; [0,''H''] és [0,2&pi;] &times; [0,''R''].
 +
 +
'''C<sup>1</sup>-ség'''. Ez azért kell, mert a térfogati integrált a ''D'' paramétertartományon a
 +
:<math>\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V=\int\limits_{\mathbf{r}^{-1}(V)}\mathrm{div}\,\mathbf{v}(\mathbf{r}(u,v,w))|\mathrm{J}^{\mathbf{r}}(u,v,w)|\;\mathrm{d}u\mathrm{d}v\mathrm{d}w</math>
 +
képlettel számoljuk és ahhoz, hogy ez lézetten, ahhoz pl az kell, hogy ne csak az '''r''' = '''r'''(u,v,w) legyen folytonosan diff.-ható, de a divergencia is folytonos legyen.
 +
 +
'''Egyszeresen összefüggő tartomány.''' A G<sub>1</sub>: [a,b] <math>\to</math> '''R'''<sup>3</sup> és a G<sub>2</sub>: [a,b] <math>\to</math> '''R'''<sup>3</sup> görbék homotópak, ha létezik olyan ''F'': [0,1] &times; [a,b] <math>\to</math> '''R'''<sup>3</sup> folytonos függvény, hogy F(0,.) &equiv; G<sub>1</sub> és F(1,.) &equiv; G<sub>2</sub>.Ez gyakorlatilag azt jelenti, hogy a G<sub>1</sub> a G<sub>2</sub>-be folytonos transzformációval átvihető. Egyszeresen összefüggő egy tartomány, ha benne minden zárt görbe homotóp a konstans görbével.
 +
 +
Az egyszeres összefüggőség lényeges feltétel. Gondoljunk a '''v'''('''r''') = '''r'''/''r''<sup>3</sup> vektortérre. Ennek divergenciája 0, de az origó körüli zárt gömbfelület integrálja 4&pi;.
 +
 +
'''Gauss-tétel''' ('''R'''<sup>2</sup>-re) Legyen D egyszeresen összefüggő, mérhető síktartomány és legyen G &equiv; '''r'''(t) ennek határát paraméterező zárt görbe. Ha '''v''' folytonosan '''R'''-differenciálható a D lezártján, akkor
 +
:<math>\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{A}=\int\limits_{D} \mathrm{div}\,(\mathbf{v})\mathrm{d}A</math>
 +
 +
Így tehát a komplex vonalintegrál kiszámításához csak a '''v''' ' és '''w''' ' felületi integrálját kell kiszámítanunk, amihez a Gauss-tétel miatt beli divergenciákat kell kiszámítanunk:
 +
:<math>\mathrm{div}\mathbf{v}'=-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}=0</math>
 +
:<math>\mathrm{div}\mathbf{w}'=\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}=0</math>
 +
Ami, a C-R-egyenletek miatt igaz.
 +
 +
Innen
 +
:<math>\int\limits_{G}f(z)\mathrm{d}z=0</math>
 +
 +
===Stokes-tétel===
 +
 +
Nézzük meg Stokes-tétellel is a bizonyítást.
 +
 +
'''Stokes-tétel''' ('''R'''<sup>3</sup>-ra) Legyen a nyílt halmazon értelmezett '''v''' vektorfüggvény folytonosan differenciálható, a Dom('''v''')-beli F felület pereme legyen a szintén Dom('''v''')-beli G zárt, F-nek megfelelően irányított görbe. Ekkor 
 +
:<math>\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{F} \mathrm{rot}(\mathbf{v})\mathrm{d}\mathbf{F}</math>
 +
 +
A térbeli cirkulációmentességre vonatkozó nevezetes tétel ezzel a tétellel kapcsoltos. Ebben az esetben, bár az egyszeres összefüggőség nincs megkötve Dom('''v''')-re vonatkozólag, előjön a következményében:
 +
 +
'''Következmény.''' Ha az egyszeresen összefűggő ''D'' nyílt halmazon értelmezett '''v''' vektortér folytonosan differenciálható, akkor az alábbi három kijelentés ekvivaléens egymással:
 +
# rot '''v''' eltűnik ''D''-n.
 +
# minden ''D''-ben haladó zárt görbén a '''v''' körintegrálja nulla
 +
# létezik '''v'''-nek ''D''-n potenciálja, azaz olyan &Phi; : ''D'' <math>\to</math> '''R'''<sup>3</sup> függvény, melyre grad &Phi; = '''v'''.
 +
 +
Itt az egyszeres összefüggőség azért kell, mert annyit biztosan tudunk, hogy ilyen esetben a zárt görbéhez található olyan felület, mely a tartományban halad és pereme a görbe.
 +
 +
'''Stokes-tétel''' ('''R'''<sup>2</sup>-re) Legyen a D síkbeli felület határán a G zárt görbe ( '''r'''(t) ). Ha '''v''' folytonosan '''R'''-differenciálható, akkor
 +
:<math>\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{D} \mathrm{rot}(\mathbf{v})\mathrm{d}A</math>
 +
 +
Világos, hogy a D tartománynak egyszeresen összefüggőnek kell lennie ahhoz, hogy a G a határa legyen a D-nek. Ekkor csak a rotációt kell kiszámítanunk:
 +
 +
:<math>\mathrm{rot}\mathbf{v}=\frac{\partial u}{\partial y} - \left(-\frac{\partial v}{\partial x}\right)=0</math>
 +
:<math>\mathrm{rot}\mathbf{w}=\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}=0</math>
 +
 +
Ami, a C-R-egyenletek miatt igaz.
 +
 +
===Goursat-lemma, Cauchy-féle integráltétel===
 +
 +
Goursat ennél is mélyebb eredményt talált:
 +
 +
 +
'''Goursat-lemma'''. A T háromszöglapon reguláris ''f'' komplex függvény integrálja a háromszög határán nulla:
 +
:<math>\oint\limits_{\partial T}f=0\,</math>
 +
 +
Innen már könnyen adódik a komplex analízis főtétele, melyet először Cauchy modott ki ugyan csak folytonosan diffható komplex függvényre, de Goursat ezt megfejelte a gyengített feltételével:
 +
 +
'''Főtétel.''' Ha a ''D'' tartományon egyszeresen összefüggő tartoányon reguláris az ''f'' komplex függvény, akkor a tartományban minden zárt G görbén a függvény integrálja nulla:
 +
:<math>\oint\limits_{G} f=0\,</math>
 +
 +
  
 
==Komplex sorozatok==
 
==Komplex sorozatok==

A lap 2013. október 23., 07:44-kori változata

<Matematika A3a 2008

Tartalomjegyzék

C-differenciálhatóság

A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől

(w\cdot z)'=w\in \mathbf{C}
(z^2)'=2z\in \mathbf{C}

mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a

(\overline{z})'=(\begin{smallmatrix} 1 & 0\\0 & -1\end{smallmatrix})\notin \mathbf{C}

mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.

Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Jelölése: f'(z0).

Azt, hogy az f a z0-ban komplex deriválható még úgy is jelöljük, hogy

f\in \mathrm{Diff}_{\mathbf{C}}(z_0).

Pontbeli deriváltra példa a következő.

Példa. Milyen n egész számokra deriválható a 0-ban az alábbi függvény?

f(z)=\begin{cases}\overline{z}\cdot z^n, & z\ne 0\\
0, & z=0
\end{cases}

Mo. Ha n>0, akkor a különbségi hányados:

\frac{\overline{z}\cdot z^n-0}{z-0}=\frac{\overline{z}\cdot z^n}{z}=\overline{z}\cdot z^{n-1}\to 0 ha z \to 0.

Ha n = 0, akkor

\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=e^{i(-2\varphi)}

aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).

Ha n < 0, akkor

\frac{\overline{z}z^n-0}{z-0}=\frac{\overline{z}}{z^{-n+1}}=\frac{\overline{z}}{z}\frac{1}{z^{-n}}

ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.

Tehát n > 0-ra a függvény komplex deriválható a 0-ban, más n < 1-re nem deriválható.

Tétel. - A komplex differenciálhatóság jellemzése - Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:

1) f\in \mathrm{Diff}_{\mathbf{C}}(z_0)
2) f\in \mathrm{Diff}_{\mathbf{R}}(x_0,y_0) és [\mathrm{d}f(x_0,y_0)]\in\mathbf{C}.

Bizonyítás. Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény és w' komplex szám. Tekintsük a következő határértéket:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-w\cdot (z-z_0)}{|z-z_0|}=0

Ha ez létezik, akkor ekvivalens a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right|=0

Azaz

\lim\limits_{z\to z_0}\left|\frac{z-z_0}{|z-z_0|}\left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right|=0

Itt (z-z0)/|z-z0| a komplex egységkörön "futó" függvény, ezért a fenti ekvivalnes a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-w\right|=0

Ami viszont ugyanakkor igaz mint:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol w a komplex derivált, akkor azt kapjuk, hogy a w mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z0)]=[w].

Másfelől, ha f valósan deriválható és a deriváltja a w komplex számot reprezentálja, akkor komplexen is deriválható.

Cauchy--Riemann-egyenletek A fenti tételben a [df(z)] ∈ C feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha f = u + iv és z = x +iy, akkor

\begin{cases}
\partial_xu=\partial_yv\\
\partial_yu=-\partial_x v
\end{cases}

Komplex deriváltfüggvény Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:

f'(z)=\partial_x u+\mathrm{i}\partial_xv=\partial_y v+\mathrm{i}\partial_xv=\partial_xu-\mathrm{i}\partial_yu=\partial_y v-\mathrm{i}\partial_yu

Definíció - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.

Feladat. Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?

Feladat. Legyen f(x + iy) = x2 + iy3. Hol komplex deriválható és hol reguláris f?


Harmonikus társ keresése

Azt mondjuk, hogy a kétszer differenciálható u=u(x,y) valós függvény harmonikus, ha

u_{xx}''+u_{yy}''\equiv \Delta u\equiv 0\,

itt Δ a Laplace-operátor (nem a Laplace-transzformátor!, hanem a vektoranalízisbeli vektormezőre Hesse-mátrix nyoma).

A C--R-egyenletek mutatják, hogy ha f=u+iv reguláris, akkor u és v harmonikus függvények. Ugyanis:

u_x'=v_y'\, és
v_x'=-u_y'\,

De u és v Hesse-mátrixa is szimmetrikus, ezért:

v_{yy}''=u_{xy}''=u_{yx}''=-v_{xx}''\,

azaz

\Delta v\equiv 0\, és fordítva.

Általában az a feladat, hogy ha adott u, akkor keressük az ő harmonikus társát, v-t, mellyel u+iv reguláris. Ha tehát adott u, akkor van F és G, hogy

F=v_y'\,
G=-v_x'\,

Ami az egzakt differenciálegynlet megoldásánál tanult parciális differenciálegyenlet megoldását igényli v-re, mint potenciálfüggvényre (ekkor f-et komplex pontenciálnak nevezzük, mármint a (v'x(x,y),vy'(x,y)) síkbeli vektormező komplex pontenciáljának; a v valódi pontenciálja lenne. Ennek szükséges utánanézni máshol is!)

1.. Keressünk harmonikus párt az

u=x^4+y^4-6x^2y^2\,

függvényhez!

Mo. Van neki, ha Δ=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.

Komplex integrál

Görbék a komplex síkon

Ha G:[a,b]\toC, t\mapstoz(t) folytonosan differenciálható, akkor G-t görbének nevezzük. (Esetleg a folytonos, véges sok helyen nem folytonosan differenciálható előbbi G-ket is görbéknek nevezzük.) A G görbe egyszerű, ha nem metszi át saját magát, azaz minden t1, t2-re, ha z(t1) = z(t2), akkor t1 = t2. G zárt, ha z(a) = z(b). A görbe t-beli irányvektorán a

\dot{z}(t)=\dot{x}(t)+\mathrm{i}\dot{y}(t)

komplex számot értjük.

Példák

1. Legyen t∈[a,b]-re z(t) = x(t) + iy(t) olyan, hogy x(t) = x0 + w1t és y(t) = y0 + w2t, azaz z(t) = z0 + wt. Ekkor z(t) egy egyenes szakasz.

És ekkor:

\dot{z}(t)=w

2. Az origó középpontú R sugarú kör:

z(t) = Reit t∈[0,2π]

És ekkor

\dot{z}(t)=R\mathrm{i}e^{\mathrm{i}t}

hiszen

\dot{z}(t)=R\dot{\cos(t)+\mathrm{i}\sin(t)}=-R\sin(t)+\mathrm{i}R\cos(t)=\mathrm{i}(R\mathrm{i}\sin(t)+R\cos(t))

Komplex vonalmenti integrál

Definíció. Ha G:[a,b]\toC görbe és f olyan komplex függvény, melyre Ran(G)⊆Dom(f), és f folytonos, akkor belátható, hogy létezik a

\begin{matrix}
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 & n\to \infty & \\
 & \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 & |\Delta z_i|\to 0 &  
\end{matrix}

határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok zi pontot, melyek a szigorúan monoton (ti)-khez tartoznak a zi = z(ti) definícióval. Ezen [z(ti),z(ti + 1)] görbeszakaszokon belül felvettük tetszőlegesen a ζi közbülső pontokat, és a Δzi=[z(ti),z(ti + 1)] szakaszokkal elkészítettük az f(ζi)Δzi komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény G-re vett komplex integrálja.

Visszavezetés valós vonalintegrálra. Az integrál kifejezhető vonalintegrállal. Ha ugyanis f= u + iv, akkor az f=(u,v) vektormezőnek olyan differenciálforma szerinti integrálja a komplex pályamenti integrál, mely az f=(u,v) vektor és a dz=(dx,dy) infinitezimális elmozdulásvektor komplex szorzásaként jön létre:

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x

Ebben a felírásban az (u,-v) és (v,u) olyan segédvektormezők, melyek vonalintegráljai adják meg a komplex integrál valós és képzetes részét. Tehát az integrált a

\mathbf{P}=\begin{pmatrix}u\\-v\end{pmatrix} és \mathbf{Q}=\begin{pmatrix}v\\u\end{pmatrix}

segédvektormezők síkbeli vonalintegráljai, vagy a

\mathbf{P}'=\begin{pmatrix}-v\\-u\end{pmatrix} és \mathbf{Q}'=\begin{pmatrix}u\\-v\end{pmatrix}

segédvektormezők síkbeli felületi integráljai szolgáltatják.

Itt érdemes feleleveníteni, hogy az S = (s1, s2) síkvektormező felületi integrálja nem más, mint a (s2, s1) vektormező vonalintegrálja (a megfelelő irányítással).

\int\limits_{F} \mathbf{S}\,\mathrm{d}\mathbf{f}=\int\limits_{''F''} s_1 \mathrm{d}y-s_2\mathrm{d}x

megfelelő módon irányítva az F felületet, ill ennek "F" görbe mivoltát.

(Azaz a s_2dx - s_1 dy differenciálforma integrálja. Differenciálforma -- nemes egyszerűséggel -- egy olyan kifejezése, ahol dx, dy, dz-k és egy vektormező komponensei vannak összeszorozva-összeadva.)

Kiszámítási formula. Belátható, hogy a fenti integrál a következőkkel egyenlő:


\int\limits_{G}f(z)\mathrm{d}z=\int\limits_{a}^b f(z(t))\cdot \dot{z}(t)\,\mathrm{d}t

Példa

1. Legyen G a komplex egységkör pozitívan irányítva.

\int\limits_{|z|=1}\frac{1}{z}\mathrm{d}z=\int\limits_{0}^{2\pi} \frac{1}{e^{\mathrm{i}t}}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{2\pi} \mathrm{i}\,\mathrm{d}t=2\pi\mathrm{i}

Ahol a valós Newton--Leibniz-formulát alkalmaztuk a komponensfüggvényekre.

2. Legyen G a z(t)=(1+2i)t, ahol t∈[0,1].

\int\limits_{G}\overline{z}\mathrm{d}z=\int\limits_{0}^{1} (1-2\mathrm{i})t\cdot (1+2\mathrm{i})\,\mathrm{d}t=\int\limits_{0}^{1}5t\,\mathrm{d}t=\frac{5}{2}

3. Legyen G a komplex egységkör felső fele, pozitívan irányítva.

\int\limits_{|z|=1,\mathrm{Im}(z)\geq 0}\overline{z}^2\mathrm{d}z=\int\limits_{0}^{\pi}e^{-2\mathrm{i}t}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{\pi}e^{-\mathrm{i}t}\,\mathrm{d}t=1-(-1)=2

Komplex Newton--Leibniz-formula

Ha az f komplex függvény, olyan, hogy van olyan komplex differenciálható F, melyre F'=f, akkor azt mondjuk, hogy a F az f primitív függvénye.

Komplex Newton--Leibniz-formula. Ha a nyílt halmazon értelmezett f komplex függvénynek primitív függvénye az F és f folytonos, akkor minden az f értelmezési tartományában haladó G:[a,b]\toC görbére:

\int\limits_{G}f(z)\,\mathrm{d}z=F(b)-F(a)

Például:

4. Legyen f(z)=\frac{1}{z^2}. Mi az egységkörre az integrálja?

F(z)=-\frac{1}{z}

primitívfüggvénye f-nek, ezért

\int\limits_{|z|=1}\frac{1}{z^2}\,\mathrm{d}z=0

hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.


Cirkulációmentesség

Tétel. Ha a D tartományon értelmezett f függvénynek van primitív függvénye, akkor a körintegrál minden a D-ben haladó folytonosan differenciálható (ill. ilyenek véges összekapcsolásain) zárt görbén eltűnik:

\oint f=0\,

További információhoz akkor jutunk, ha a többváltozós analízis cirkuálciómentességi feltételeit vizsgáljuk. Ehhez a vissza kell vezetni a komplex integrált a vonalintegrálra.

Legyen f(z) = f(x,y) = u(x,y) + iv(x,y). Ekkor f felfogható R2 \supset\!\to R2 függvényként, melynek vonalintegrálja a

G:z(t)\equiv\mathbf{r}(t)=(x(t),y(t))\,

vonal mentén:

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x

amiben az

\mathbf{v}=\begin{pmatrix}u\\-v\end{pmatrix} és \mathbf{w}=\begin{pmatrix}v\\u\end{pmatrix}

vektorterek integráljai szerepelnek.

Vagy kétdimenziós felületi integrálként:

\mathbf{v}'=\begin{pmatrix}-v\\-u\end{pmatrix} és \mathbf{w}'=\begin{pmatrix}u\\-v\end{pmatrix}

Ugyanis a komplex vonalintegrált síkbeli felületi integrállá lehet alakítani:

\int \mathbf{v}\mathrm{d}\mathbf{A}=\int \mathbf{v}\times\mathrm{d}\mathbf{r}=\int v_1 \mathrm{d}y-v_2\mathrm{d}x


Gauss-tétel

Lássuk először Gauss-tételle, hogyan következtethetünk a körintegrál eltűnésére.

Gauss-tétel (R3-ra) Legyen v nyílt halmazon értelmezett C1-függvény, V egyszeresen összefüggő, mérhető térrész és legyen ennek ∂V határa kifelé irányított felület. Ha V a határával együtt Dom(v)-ben van, akkor

\oint\limits_{\partial V} \mathbf{v}\;\mathrm{d}\mathbf{A}=\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V

Az itt szereplő fogalmak közül néhányról beszélnünk kell.

Felület. Legyenek a φi:Di \to R3 függvények folytonosan differenciálhatóak és injektívek int(Di)-n, melyek mérhető tarományok R2-ben. Ha a képeik egymásba nem nyúlók, azaz int(φi(Di)) ∩ int(φj(Dj)) üres, ha ij, és a képek uniója összefüggő halmaz, akkor U Ran(φi)-t előállítottuk paraméteres felületként.

Példaként említhetjük a kúp paraméterezését:

\mathbf{r}_1(\varphi, h)=\left\{\begin{matrix} h\sin\vartheta\cos \varphi\\ h\sin\vartheta\sin\varphi\\ h\end{matrix}\right., ha φ ∈ [0,2π] és h ∈ [0,H]
\mathbf{r}_2(\varphi, h)=\left\{\begin{matrix}r\cos\varphi\\r\sin\varphi \\ H\end{matrix}\right., ha φ ∈ [0,2π] és r ∈ [0,R]

ahol H a kúp magassága, R az alapkörsugara, θ a félkúpszöge (z a tengelye, O a csúcsa). Tehát itt a paramétertartományok [0,2π] × [0,H] és [0,2π] × [0,R].

C1-ség. Ez azért kell, mert a térfogati integrált a D paramétertartományon a

\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V=\int\limits_{\mathbf{r}^{-1}(V)}\mathrm{div}\,\mathbf{v}(\mathbf{r}(u,v,w))|\mathrm{J}^{\mathbf{r}}(u,v,w)|\;\mathrm{d}u\mathrm{d}v\mathrm{d}w

képlettel számoljuk és ahhoz, hogy ez lézetten, ahhoz pl az kell, hogy ne csak az r = r(u,v,w) legyen folytonosan diff.-ható, de a divergencia is folytonos legyen.

Egyszeresen összefüggő tartomány. A G1: [a,b] \to R3 és a G2: [a,b] \to R3 görbék homotópak, ha létezik olyan F: [0,1] × [a,b] \to R3 folytonos függvény, hogy F(0,.) ≡ G1 és F(1,.) ≡ G2.Ez gyakorlatilag azt jelenti, hogy a G1 a G2-be folytonos transzformációval átvihető. Egyszeresen összefüggő egy tartomány, ha benne minden zárt görbe homotóp a konstans görbével.

Az egyszeres összefüggőség lényeges feltétel. Gondoljunk a v(r) = r/r3 vektortérre. Ennek divergenciája 0, de az origó körüli zárt gömbfelület integrálja 4π.

Gauss-tétel (R2-re) Legyen D egyszeresen összefüggő, mérhető síktartomány és legyen G ≡ r(t) ennek határát paraméterező zárt görbe. Ha v folytonosan R-differenciálható a D lezártján, akkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{A}=\int\limits_{D} \mathrm{div}\,(\mathbf{v})\mathrm{d}A

Így tehát a komplex vonalintegrál kiszámításához csak a v ' és w ' felületi integrálját kell kiszámítanunk, amihez a Gauss-tétel miatt beli divergenciákat kell kiszámítanunk:

\mathrm{div}\mathbf{v}'=-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}=0
\mathrm{div}\mathbf{w}'=\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}=0

Ami, a C-R-egyenletek miatt igaz.

Innen

\int\limits_{G}f(z)\mathrm{d}z=0

Stokes-tétel

Nézzük meg Stokes-tétellel is a bizonyítást.

Stokes-tétel (R3-ra) Legyen a nyílt halmazon értelmezett v vektorfüggvény folytonosan differenciálható, a Dom(v)-beli F felület pereme legyen a szintén Dom(v)-beli G zárt, F-nek megfelelően irányított görbe. Ekkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{F} \mathrm{rot}(\mathbf{v})\mathrm{d}\mathbf{F}

A térbeli cirkulációmentességre vonatkozó nevezetes tétel ezzel a tétellel kapcsoltos. Ebben az esetben, bár az egyszeres összefüggőség nincs megkötve Dom(v)-re vonatkozólag, előjön a következményében:

Következmény. Ha az egyszeresen összefűggő D nyílt halmazon értelmezett v vektortér folytonosan differenciálható, akkor az alábbi három kijelentés ekvivaléens egymással:

  1. rot v eltűnik D-n.
  2. minden D-ben haladó zárt görbén a v körintegrálja nulla
  3. létezik v-nek D-n potenciálja, azaz olyan Φ : D \to R3 függvény, melyre grad Φ = v.

Itt az egyszeres összefüggőség azért kell, mert annyit biztosan tudunk, hogy ilyen esetben a zárt görbéhez található olyan felület, mely a tartományban halad és pereme a görbe.

Stokes-tétel (R2-re) Legyen a D síkbeli felület határán a G zárt görbe ( r(t) ). Ha v folytonosan R-differenciálható, akkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{D} \mathrm{rot}(\mathbf{v})\mathrm{d}A

Világos, hogy a D tartománynak egyszeresen összefüggőnek kell lennie ahhoz, hogy a G a határa legyen a D-nek. Ekkor csak a rotációt kell kiszámítanunk:

\mathrm{rot}\mathbf{v}=\frac{\partial u}{\partial y} - \left(-\frac{\partial v}{\partial x}\right)=0
\mathrm{rot}\mathbf{w}=\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}=0

Ami, a C-R-egyenletek miatt igaz.

Goursat-lemma, Cauchy-féle integráltétel

Goursat ennél is mélyebb eredményt talált:


Goursat-lemma. A T háromszöglapon reguláris f komplex függvény integrálja a háromszög határán nulla:

\oint\limits_{\partial T}f=0\,

Innen már könnyen adódik a komplex analízis főtétele, melyet először Cauchy modott ki ugyan csak folytonosan diffható komplex függvényre, de Goursat ezt megfejelte a gyengített feltételével:

Főtétel. Ha a D tartományon egyszeresen összefüggő tartoányon reguláris az f komplex függvény, akkor a tartományban minden zárt G görbén a függvény integrálja nulla:

\oint\limits_{G} f=0\,


Komplex sorozatok

Minthogy CR2 (mint normált vektortér), a komplex sorozatok azon tulajdonságai, melyek a vektortérműveletekkel és az | . | ≡ || . ||2 euklideszi normával kapcsolatosak mind R2-ből ismertnek tekinthetők. A sorozatok konvergenciáját ugyanúgy definiáljuk, mint R2-ben:


\begin{matrix}
(z_n)\in\mathbf{C}^{\mathbf{Z}^+}\mbox{ konvergens }\\
\\
\Updownarrow\mathrm{def}\\
\\
\exists z\in \mathbf{C}\quad \forall \varepsilon\in\mathbf{R}^+\quad \exists N\in \mathbf{Z}^+\quad \forall n\in\mathbf{Z}^+ \quad(n> N\;\Rightarrow\;|z_n-z|<\varepsilon)
\end{matrix}

Ekkor a fenti z egyértelmű, és ez a sorozat határértéke (lim(zn))

A legfontosabb jellemzése tehát a konvergenciának az R2-ből kölcsönzött, a komponensekre vonatkozó kritérium:

Tétel – A C-beli (zn) = (an + ibn) sorozat konvergens akkor és csak akkor, ha

(an) konvergens és
(bn) konvergens.

Ekkor lim(zn) = lim(an) + i\cdotlim(bn)

Fontos látni a kapcsolatot a sorozathatárék és a függvényhatárérték között. Egy (ζn) komplex sorozat nem más, mint egy

\zeta: \mathbf{Z}^+\to \mathbf{C}

függvény. Ha Z-t komplex részhalmaznak gondoljuk (ahogy az is), akkor az egyetlen torlódási pontja a ∞. Ezért egy sorozatnak pontosan akkor létezik határértéke és ez a w szám, ha mint függvénynek létezik határértéke és az a w. Azaz:

\exists\lim\limits_{n\to \infty}z_n=w\in\overline{\mathbf{C}}\quad\Longleftrightarrow\quad\exists\lim\limits_{\infty}\zeta=w\in\overline{\mathbf{C}}

Ebből következik, hogy a függvényhatárértékre vonatkozó minden műveleti szabály öröklődik a sorozathatárértékre.

Nullsorozatok

A 0 komplex számhoz tartó sorozatok nullsorozatok. Az abszolútérték és a szorzás jó tulajdonságai miatt öröklődnek a valós sorozatok alábbi tulajdonságai.

Állítás – Legyen (zn) komplex számsorozat.

  1. abszolútérték: zn \to 0 akkor és csak akkor, ha |zn| \to 0
  2. eltolás: zn \to z akkor és csak akkor, ha (znz) \to 0
  3. "K  \cdot 0": ha (wn) korlátos és zn \to 0, akkor (wn \cdot zn) \to 0
  4. majoráns: ha (δn) \to 0 valós és |zn| < δn, akkor zn \to 0
  5. hányadoskritérium: ha \limsup\left|\frac{z_{n+1}}{z_n}\right|<1\,, akkor zn \to 0
  6. gyökkritérium: ha \limsup\sqrt[n]{|z_n|}<1\,, akkor zn \to 0


Ezek közül C-ben a legjellegzetesebb a "K  \cdot 0", hiszen ez azt állítja, hogy nem csak a λn.zn skalárral történő szorzás esetén igaz a "korlátos - nullához" tartó kritérium (mindkét változóban), hanem komplex szorzás is ilyen.


1. Feladat

\left(\frac{\sqrt{2}+i}{\sqrt{3n}}\right)^n\to ?

(Útmutatás: hivatkozzunk a "korlátos szor nullához tartó" kritériumra.)

\left(\frac{\sqrt{2}+i}{\sqrt{3n}}\right)^n=\left(\frac{\sqrt{2}+i}{\sqrt{3}}\right)^n\frac{1}{\sqrt{n^n}}

2. Feladat.

\frac{\sqrt[n]{n^3+2n}}{i+1}\to ?

ahol az n-edik gyök a valós számból vont valós gyök.

(Útmutatás: "i-telenítsük" a nevezőt.)

\frac{\sqrt[n]{n^3+2n}}{i+1}=\frac{(i-1)\sqrt[n]{n^3+2n}}{-1-1}=\frac{i\sqrt[n]{n^3+2n}-\sqrt[n]{n^3+2n}}{-2}\to \frac{1}{2}-\frac{1}{2}i

ugyanis

1\leftarrow\sqrt[n]{n}^3=\sqrt[n]{n^3}\leq\sqrt[n]{n^3+2n}\leq\sqrt[n]{n^3+\frac{n^3}{2}}=\sqrt[n]{\frac{3}{2}n^3}=\sqrt[n]{\frac{3}{2}}\sqrt[n]{n}^3\to 1


3. Feladat.

\left(\frac{n+i}{n}\right)^n\to ?

(Útmutatás: használjunk trigonometrikus alakot és hatványozzunk.)

\left(\frac{n+i}{n}\right)^n=\left(\sqrt{1+\frac{1}{n^2}}\right)^n\cdot\left(\cos\left(n\,\mathrm{arc\,tg}\left(\frac{1}{n}\right)\right)+i\sin\left(n\,\mathrm{arc\,tg}\left(\frac{1}{n}\right)\right)\right)\to
\to \cos1+i\sin 1\,

Mert a szögfüggvények argumentumában lévő sorozat az 1-hez tart (pl L'Hospital-szabállyal majd átviteli elvvel ellenőrizhető), a első szorzó pedig az 1-ehez tart (rendőrelvvel). Az argumentumokban lévő értéket tertmészetesen radiánban kell venni: nem 1˚, hanem 1 rad.

Komplex sorok

Minden normált térben definiálhatók sorok és ezek konvergenciája, így C-ben is. Az (zn) sorozat

s_n=\sum\limits_{k=1}^n z_k

részletösszegeinek (sn) sorozatát a (zn) -ből képzett sornak nevezzük és ∑(zn)-nel jelöljük. Azt mondjuk, hogy a ∑(zn) sor konvergens és összege a w komplex szám, ha (zn) részletösszegeinek sorozata konvergens és határértéke w. Ekkor az összeget a

\sum\limits_{n=1}^{\infty}z_n

szimbólummal jelöljük.

Komponensek

Az egyik módja, hogy a komplex sorok konvergenciáját visszavezessük a valósokra, ha a komponenssorozatokat vesszük:

\sum(z_n)=\sum(x_n+iy_n)\,

esetén az összegeket elképzelve, azokból az i kiemelhető, így

\sum(z_n)=\sum(x_n)+i\sum(y_n)\,

ahol az összeget és a szorzást tagonként végezzük. Ekkor egy sor ponrosan akkor konvergens, ha mindkét komponense konvergens.

Cauchy-kritérium és abszolút konvergencia

Világos, hogy egy sor, mint részletösszegsorozat pontosan akkor konvergens, ha Cauchy-sorozat. Ez a Cauchy-kritérium sorokra.

Létezik az abszolút konvergencia fogalmai is. Egy sor abszolút konvergens, ha a tagjai abszolútértékéből képezett sorozat konvergens. Igaz az, hogy egy normált tér akkor és csak akkor teljes, ha minden abszolút konvergens sor konvergens benne. (És C teljes, mert minden Cauchy-sorozat konvergál benne, ami pont annak a módja, hogy belássuk az előbbi kritériumot.) Persze az előfordul a teljes terekben is, hogy konvergens sorozatok nem lesznek abszolút konvergensek.

Kritériumok az abszolút konvergenciára

Az abszolút konvergencia fenti kritériumából egy sor komplex sorokra vonatkozó kritérium adódik a valósból.

Tétel – Legyen (zn) komplex számsorozat.

  1. Szükséges kritérium: Ha ∑(zn) konvergens, akkor (zn) nulsorozat.
  2. Geometriai sor: ha |z| < 1, akkor \sum\limits_{(0)} (z^n) konvergens és az összege:
    \sum\limits_{n=0}^\infty z^n=\frac{1}{1-z}
  3. Összehasonlító kritérium: ha az ∑(rn) valós sor konvergens és |zn| ≤ rn majdnem minden n-re, akkor ∑(zn) abszolút konvergens (majoráns-kritérium). Ha az ∑(rn) pozitív valós sor divergens és rn ≤ |zn| m.m., akkor ∑(zn) divergens (minoráns-kritérium).
  4. p-edik hatvány próba: ha p > 1 valós, akkor a (\sum\limits_{1}\frac{1}{n^p}) valós sor konvergens.
    Ha 0 ≤ p ≤ 1, akkor a (\sum\limits_{1}\frac{1}{n^p}) valós sor divergens.
  5. Hányadoskritérium: ha \limsup\left|\frac{z_{n+1}}{z_n}\right|<1\,, akkor ∑(zn) abszolút konvergens. Ha a "liminf" > 1, akkor divergens
  6. Gyökkritérium: ha \limsup\sqrt[n]{|z_n|}<1\,, akkor ∑(zn) abszolút konvergens. Ha a "limsup" > 1, akkor divergens.


Megjegyezzük, hogy ha a gyökök és hányadosok sorozata konvergál, akkor ugyanahhoz a számhoz konvergálnak.


4. Konvergens-e illetve abszolút konvergens-e?

\sum\left(\frac{i^n}{n}\right)

5.

  1. Konvergens-e és mi a határértéke: \frac{n!}{n^n}i^n
  2. Konvergens-e \sum\left(\frac{n!}{n^n}i^n\right)
  3. Milyen z-re konvergens: \sum\left(\frac{n!}{n^n}z^n\right)

(Útmutatás: használjuk a hányadoskritériumot, vagy vizsgáljuk, hogy milyen rendben tartanak a végtelenhez az összetevősorozatok.)

\frac{\left|\frac{(n+1)!}{(n+1)^{n+1}}i^{n+1}\right|}{\left|\frac{n!}{n^n}i^n\right|}=\frac{n+1}{\left(1+\frac{1}{n}\right)^n\cdot(n+1)}\to\frac{1}{e}<1

azaz 0-hoz tart-


6.

  1. Konvergens-e és mi a határértéke: \frac{1}{\left(1+\frac{i}{n}\right)^{n^4}}
  2. Konvergens-e \sum\left(\frac{1}{\left(1+\frac{i}{n}\right)^{n^4}}\right)
  3. Milyen z-re konvergens:\sum\left(\frac{1}{\left(1+\frac{i|z|}{n}\right)^{n^4}}\right)

(Útmutatás: használjuk a gyökkritériumot.)

\sqrt[n]{\left|1+\frac{i}{n}\right|^{n^4}}=\left|1+\frac{i}{n}\right|^{n^3}=\left(\sqrt{\left(1+\frac{1}{n^2}\right)^{n^2}}\right)^n\geq (1+\varepsilon)^n\to +\infty

Így a reciproka a 0-hoz tart, azaz a limszup < 1.

Komplex hatványsorok

DefinícióHatványsor – Legyen (an) komplex számsorozat és z0C. Ekkor az ∑(an(idC-z0)n) függvénysort hatványsornak nevezzük és összegét, az

z\mapsto \sum\limits_{n=0}^\infty a_n(z-z_0)^n

hozzárendelési utasítással értelmezett, a {z ∈ | ∑(an(z-z0)n) konvergál } halmazon értelmezett függvényt a hatványsor összegének nevezzük. Középpontja z0, együtthatósorozata (an).

A továbbiakban csak a ∑(anzn) alakú, azaz a 0 körüli hatványsorokkal foglalkozunk (ezzel nem csorbítjuk az általánosságot, mert eltolással megkaphatjuk a többit is).

TételCauchy–Hadamard-tétel – Ha (an) komplex számsorozat, c= \limsup\limits_{n}\sqrt[n]{|a_n|} és

R=\left\{
\begin{matrix}
0,& \mathrm{ha} &c=+\infty\\
+\infty,& \mathrm{ha} & c=0\\
\frac{1}{c},& \mathrm{ha} & 0<c<+\infty
\end{matrix}

\right.

akkor ∑(anzn) abszolút konvergens a BR(0) gömbön és divergens a B1/R(∞) gömbön.

A tétel minden részletre kiterjedő bizonyítását nem végezzük el, csak utalunk rá, hogy nyilvánvaló, hogy a Cauchy-féle gyökkritériumot kell benne használni. A tételbeli R sugarat a hatványsor konvergenciasugarának nevezzük. R-et másként is kiszámíthajuk. Ha azt tudjuk, a hányadoskritérium alapján, hogy

\exists\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|}

akkor létezik és ezzel egyenlő az n-edik gyökök sorozata is:

\exists\lim\limits_{n\to \infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|}=\,''\,\frac{1}{R}\,''

ahol az idézőjel azt jelzi, hogy a konvergenciasugár lehet végtelen vagy 0 is.


7. Feladat. Mi az alábbi hatványsorok konvergenciaköre és -sugara?

  1. \sum\left((2i)^nn^3(z-i)^n\right)
  2. \sum\left(\mathrm{arc\,sin}\left(\frac{1}{n}\right)(z+1+i)^n\right)
  3. \sum\left(\frac{in^{2008}}{n!}z^n\right)


Analitikusnak nevezünk egy f komplex függvényt, a z0 pontban, ha van olyan δ sugarú környezet és ∑(an(z-z0)n) hatványsor, hogy minden z ∈ Bδ(z0)-ra f érelmezett, ∑(an(z-z0)n) konvergens és

f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n

Ezt úgy jelöljük, hogy f ∈ Cω(z0).

8. Feladat

  1. Van-e olyan \sum\limits_{(0)}(a_n(z-2)) hatványsor, mely konvergál a 0-ban, de divergál a 3-ban. Konvergál 2-ben, de divergál az 2,000001-ben?
  2. Igazoljuk, hogy az alábbi függvény analitikus a nullában. Mi sorfejtés a konvergenciaköre?
    f(z) = \frac{1}{4+z^2} \,

Hatványsorok összegfüggvényének folytonossága és differenciálhatósága

Tétel – Ha (an) komplex számsorozat, akkor az ∑(anzn) hatványsor összegfüggvénye folytonos a konvergenciakör belsejében. Sőt, reguláris is ott.

Emlékeztetünk arra, hogy egy függvény reguláris egy pontban, ha a pont egy környezetében mindenütt értelmezett és komplex deriválható. A tétel szerint tehát analitikus függvény reguláris. A döbbenetes azonban, hogymint később kiderül: reguláris függvény analitikus: f ∈ Cω(z0) akkor és csak akkr, ha f ∈ Reg(z0).

Bizonyítás. Legyen z a konvergenciakör egy belső pontja és Δz olyan, hogy még z + Δz is a konvergenciakör belsejébe esik. Ekkor:

\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n=
\sum\limits_{n=0}^{\infty}a_n((z+\Delta z)^n-z^n)=

mert mindkét sor konvergens, ekkor algebrai azonosságokkal:

=\Delta z\sum\limits_{n=0}^{\infty}a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}

vagy ha tetszik nemnulla Δz-vel:

\frac{\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n}{\Delta z}=\sum\limits_{n=0}^{\infty}a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}

a jobb oldalon álló sor konvergenciáját a gyökkritériummal láthatjuk be:

\left|a_n\sum\limits_{k=0}^{n-1}\Delta z^{k}z^{n-1-k}\right|\leq|a_n|\cdot n r^n

ahol r olyan pozitív szám, hogy | z + Δz | < r < R (ez utóbbi a hatványsor konvergenciasugára). És

\limsup\limits_{n\to \infty}\sqrt[n]{|a_n|\cdot n r^n}=\limsup\limits_{n\to \infty}\sqrt[n]{|a_n|}\cdot 1 \cdot r\leq\frac{1}{R}r<1\,

Így azt kaptuk, hogy minden olyan Δz-re, melyre | z + Δz | < r, teljesül és |Δz| <ε/(1+∑n|an|nrn)=:δ

\left|\sum\limits_{n=0}^{\infty}a_n(z+\Delta z)^n-\sum\limits_{n=0}^{\infty}a_nz^n\right|\leq|\Delta z|\cdot \sum\limits_{n=0}^\infty|a_n|nr^n<\varepsilon.

Hosszadalmasabb számolásokkal, de lényegében ugyanígy kimutatható, hogy a hatványsor összegfüggvénye komplex differenciálható is a konvergenciakör belsejében és deriváltja a formális tagonkénti deriválásal kapott sor összegfüggvényével egyenlő, tehát:

\left(\sum\limits_{n=0}^{\infty}a_nz^n\right)'=\sum\limits_{n=1}^{\infty}a_n n z^{n-1}


Elemi függvények

Hatványfüggvények

A

w=z^n\,

típusú függvények komplex hatványfüggvények. nZ esetén, komplex deriváltjuk kiszámítható, n ≠ -1 esetben komplex primitív függvényük is van a következő értelemben:

Mivel

(z^n)'=nz^{n-1}\,

ezért n ≠ -1 esetén az az F(z) függvény, melyre  \scriptstyle{F'(z)=z^n} nem más, mint

F(z)=\frac{z^{n+1}}{n+1}+C\,

ahol C komplex konstans. n ≠ -1-re nincs primitív függvénye, mert a logaritmus nem egyértékű a komplex számok között.

Komplex vonalintegrál értelmezhető a G: [a,b] \to C folytonos függvény, mint görbe esetén azzal a különlegességgel, hogy a szorzás a komplex szorzás:

\int\limits_{G}f(z)\,\mathrm{d}z\,=_{\mathrm{def}}\lim\limits_{n \to \infty}\sum\limits_{i=1}^nf(z_i)\cdot\Delta z_i

Feltéve persze, hogy létezik és véges. Itt zi mindig a G görbe valamely pontját jelöli, amit az [a,b] egy felosztásának osztópontjainak G általi képeiből kapunk.

Ekkor fennáll a komplex Newton-Leibniz-formula. Ha a G görbe olyan nyílt halmazban halad, melyben az f-nek van primitív függvénye (egyértékű függvénye!) és f komplex integrálható, akkor z1 és z2 a végpontok esetén (a és b képe), a komplex integrál kiszámítható így:

F(z_2)-F(z_1)=\int\limits_{G}f(z)\,\mathrm{d}z\,

Ha a görbe belép az f értelmezési tartományának olyan részére, melyben a függvénynek nincs egyértelmű primitív függvénye, akkor az integrál értéke függhet a G úttól.

1. Feladat. Legyen G a 3 középpontú, 1 sugarú kör felső félköre (pozitív irányítással). Számítsuk ki a

\int\limits_{G}3z^2+1\,\mathrm{d}z\,

integrált.

2. Feladat. Legyen G az origó körüli 2 sugarú kör vonal. Mennyi az

a) \int\limits_{G}\frac{1}{z^2}\,\mathrm{d}z\, és a b) \int\limits_{G}\frac{z+1}{z}\,\mathrm{d}z\,

integrál.

A hatványfüggvények inverzei szintén nem egyértékű függvények.

Exponenciális függvény


e^z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^n}{n!}\,

Ebbőkkiderül az exponenciális függvény sok tulajdonsága. Például, ha z = x + iy, akkor

e^{x+iy}=e^x\cdot e^{iy}=e^x\cdot (\cos y + i\sin y)\,

Ebből rögtön következik, hogy komplex exponenciális függvény periodikus, periódusa a p = 2πi:

e^{z+2\pi i}=e^z\cdot e^{2\pi i}=e^z\cdot e^0\cdot (\cos 2\pi + i\sin 2\pi)=e^z(1+0i)\,

3. Feladat. Oldjuk meg az

e^z=1+i\;

egyenletet!

Írjuk át 1+i-t exponenciális alakba:

1+i=e^{\ln \sqrt{2}}\cdot e^{i\frac{\pi}{4}}\,

így

z=\ln\sqrt{2} +i\frac{\pi}{4}+2\pi i\,

4. Feladat. Oldjuk meg az

e^{iz}+ie^{-4iz}=0\,

egyenletet!

Komplex logaritmus és a reciprok integrálja

Tekintsük a

w=e^z\,

hozzárendelést! Ha w-t exponenciális alakban írjuk, megfeleltethetjük egymásnak a z algebrai alakját w trigonometrikus alakjával:

w=re^{i\varphi}=e^{x+iy}=e^x\cdot e^{iy}\,

azaz

r=e^x\, és \varphi= y\,

Ebből is látható, hogy a fordított leképezés végtelen sok értkű, hiszen ha y1 = 2π + y, akkor w(x+iy)= w(x+iy1 ). Ekkor a Riemann-felület egy végtelen sok Riemann-levélből áll.

Feladat. Számítsuk ki az alábbi integrálokat:

\int\limits_{G_1}\frac{1}{z}\,\mathrm{d}x
\int\limits_{G_2}\frac{1}{z}\,\mathrm{d}x

ahol G1 az egységkör a + irányban i-től -i-ig, G2 az egységkör a - irányban i-től -i-ig.

\int\limits_{i,\,(G_1)}^{-i}\frac{1}{z}\mathrm{d}z=[\mathrm{Log}(z)]_{i}^-i=\mathrm{Log}(e^{i\frac{3}{2}\pi})-\mathrm{Log}(e^{\frac{1}{2}\pi})=i\pi\,

ahol Log a logaritmus főrésze, hisz a görbe a egy Rieman-levélen belül marad, míg

\int\limits_{i,\,(G_2)}^{-i}\frac{1}{z}\mathrm{d}z=[\mathrm{Log}(z)]_{i}^-i=\mathrm{Log}(e^{-i\frac{1}{2}\pi})-\mathrm{Log}(e^{\frac{1}{2}\pi})=-i\pi\,

mivel itt áthalad a görbe a következő Riemann-levélre.

Más számítással:

\int\limits_{i,\,(G_1)}^{-i}\frac{1}{z}\mathrm{d}z=\int\limits_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}\frac{1}{z(t)}\cdot\frac{\mathrm{d}z(t)}{\mathrm{d}t}\,\mathrm{d}t=\int\limits_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}e^{-it}ie^{it}\mathrm{d}t=[it]_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}

Trigonometikus függvények

\sin z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^{2n+1}}{(2n+1)!}\,
\cos z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^{2n}}{(2n)!}\,

Világos, hogy valós φ-re:

e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)\,

A hiperbolikus függvényekhez hasonlóan a trigonometrikus függvények is előállnak de a komplex exponenciális segítségével:

\sin z=\frac{e^{iz}-e^{-iz}}{2i}
\cos z=\frac{e^{iz}+e^{-iz}}{2}

5. Feladat. Igazoljuk, hogy fennáll

\sin^2 z+ \cos^2z = 1\,

6. Feladat. Oldjuk meg az

\sin 4z=0\,

egyenletet!

Hiperbolikus függvények

\mathrm{sh}\, z=\frac{e^{z}-e^{-z}}{2}
\mathrm{ch}\, z=\frac{e^{z}+e^{-z}}{2}

7. Feladat. Határozzuk meg az w = sh(iz) függvény valós és képzetes részét!

Mo.

\mathrm{sh}\, iz=\frac{e^{iz}-e^{-iz}}{2}

8. Feladat. G az egységkör. Számítsuk ki

\int\limits_{(G)}\frac{e^z}{z}\mathrm{d}z\,
\int\limits_{(G)}\frac{\sin(z)}{z^4}\mathrm{d}z\,

Mo.

\int\limits_{(G)}\frac{1}{z}+1+\frac{1}{2}z+...\mathrm{d}z\,=2\pi i
\int\limits_{(G)}\frac{1}{z^3}-\frac{1}{2z}+\frac{1}{4!}z+...\mathrm{d}z\,=-\pi i
Személyes eszközök