Matematika A3a 2008/6. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(R-differenciálhatóság)
(R-differenciálhatóság)
9. sor: 9. sor:
 
szerint (itt ''u'' és ''v'' kétváltozós valós függvények, rendre az ''f'' valós és képzetes része).
 
szerint (itt ''u'' és ''v'' kétváltozós valós függvények, rendre az ''f'' valós és képzetes része).
  
''f'' abban az értelemen '''R'''-differenciálható, ahogy az (''u'',''v''):'''R'''<sup>2</sup> <math>\sup\to</math> '''R'''<sup>2</sup> függvény differenciálható, azaz  
+
''f'' abban az értelemen '''R'''-differenciálható, ahogy az (''u'',''v''):'''R'''<sup>2</sup> <math>\supset\to</math> '''R'''<sup>2</sup> függvény differenciálható, azaz  
  
'''Definíció''' -- Valós deriválhatóság -- Legyen ''g'':'''R'''<sup>2</sup> <math>\sup\to</math> '''R'''<sup>2</sup>, ''x''<sub>0</sub>&isin;IntDom(g). Ekkor a ''g'' differenciálható az ''x''<sub>0</sub> pontban, ha létezik olyan ''A'': '''R'''<sup>2</sup> <math>\to</math> '''R'''<sup>2</sup> lineáris leképezés, melyre  
+
'''Definíció''' -- Valós deriválhatóság -- Legyen ''g'':'''R'''<sup>2</sup> <math>\supset\to</math> '''R'''<sup>2</sup>, ''x''<sub>0</sub>&isin;IntDom(g). Ekkor a ''g'' differenciálható az ''x''<sub>0</sub> pontban, ha létezik olyan ''A'': '''R'''<sup>2</sup> <math>\to</math> '''R'''<sup>2</sup> lineáris leképezés, melyre  
 
:<math>\exists \lim_{x\to x_0}\frac{f(x)-f(x_0)-A(x-x_0)}{||x-x_0||}=0</math>
 
:<math>\exists \lim_{x\to x_0}\frac{f(x)-f(x_0)-A(x-x_0)}{||x-x_0||}=0</math>
 
ahol ||.|| tetszőleges norma (például az ||.||<sub>2</sub>=|.| komplex abszolútérték) '''R'''<sup>2</sup>-ben.
 
ahol ||.|| tetszőleges norma (például az ||.||<sub>2</sub>=|.| komplex abszolútérték) '''R'''<sup>2</sup>-ben.

A lap 2012. november 2., 19:27-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Differenciálhatóság

R-differenciálhatóság

Legyen f : C\to C komplex függvény. Ekkor f azonosítható az

f\equiv \begin{pmatrix}u\\v\end{pmatrix}:\mathbf{R}^2\supset\to\mathbf{R}^2

vektorértékű kétváltozós függvénnyel az

f(z)=f(x+iy)\equiv u(x,y)+iv(x,y)\,

szerint (itt u és v kétváltozós valós függvények, rendre az f valós és képzetes része).

f abban az értelemen R-differenciálható, ahogy az (u,v):R2 \supset\to R2 függvény differenciálható, azaz

Definíció -- Valós deriválhatóság -- Legyen g:R2 \supset\to R2, x0∈IntDom(g). Ekkor a g differenciálható az x0 pontban, ha létezik olyan A: R2 \to R2 lineáris leképezés, melyre

\exists \lim_{x\to x_0}\frac{f(x)-f(x_0)-A(x-x_0)}{||x-x_0||}=0

ahol ||.|| tetszőleges norma (például az ||.||2=|.| komplex abszolútérték) R2-ben.

Ekkor a fenti A lineáris leképezés egyértelmű és a jelölése: dg(x0).

Ekkor például a hozzáadás, mint affin függvény R-differenciálható, és R-differenciálja az identitás:

a_w:z\mapsto w+ z\, akkor \mathrm{d}_\mathbf{R}(a_w)z=z

A komplex számmal szorzás R-differenciálját közvetlenül a definíciójából számíthatjuk ki:

m_w:z\mapsto w\cdot z\, akkor \mathrm{J}_\mathbf{R}^{a_w}(z)=\begin{pmatrix}
w_1 & -w_2\\
w_2 & w_1
\end{pmatrix}

Rendkívül érdekes észrevétel tanúi lehetünk ekkor. z \mapsto w\cdot z R-deriváltja maga w komplex számnak megfelelő mátrix, azaz

\mathrm{J}_\mathbf{R}^{a_w}(z)=w

ha mátrixreprezentációt veszünk. Sőt, visszanézve ez az összeadásra is igaz:

\mathrm{J}_\mathbf{R}^{a_w}(z)=\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}

Feladat. Számítsuk ki az f(z) = z2 R-differenciálját!

Legyen z = x + i y. Ekkor z2 = x2 - y2 +i(2xy)

\mathrm{J}_\mathbf{R}^f(x,y)=\begin{pmatrix}
2x & -2y\\
2y & 2x
\end{pmatrix}=2z


Feladat. Számítsuk ki az \scriptstyle{f(z)=\overline{z}} R-differenciálját!


Ha z = x + i y, akkor \scriptstyle{\overline{z}=x-\mathrm{i}y}, így:

\mathrm{J}^{\overline{z}}_{\mathbf{R}}(z)=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\not\in\mathbf{C}

És ezzel már ki is mondhatjuk a Cauchy-Riemann-féle szükséges feltételt:

Annak a szükséges feltétele, hogy az f:R2 \to R2 R-differenciálható függvény differenciálja egy komplex szám mátrixreprezentációja legyen, az, hogy:
\partial_1 f_1=\partial_2 f_2 és \partial_1 f_2=-\partial_2 f_1

C-differenciálhatóság

A fenti példa motiválja a C-differenciálhatóság fogalmát. Legyen a szituáció az előbbi, azaz legyen f(z) totálisan differenciálható (mint kétváltozós függvény) a z0 pontban és a Jacobi-mátrixa ott legyen a wC szám mátrixreprezentációja. Ekkor

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-w\cdot (z-z_0)}{|z-z_0|}=0

Itt w\cdot(z-z0) egyfelől a mátrixszorzás, másfelől a komplex szorzás. Ekkor:

\lim\limits_{z\to z_0}\left(\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right)=0

Ha h(z)=(z-z0)/|z-z0|, ami a komplex "egységgömbön" "futó" függvény, akkor a komplex szorzás tulajdonságai miatt:

\lim\limits_{z\to z_0}\left(h(z)\cdot \left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right)=0

Innen a következő gondolatunk támadhat. Teljesen az egyváltozós valós derivált tulajdonságait mutató deriváltfogalmat kapunk, ha bevezetődne a következő


Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Most gondoljuk végig, hogy milyen kapcsolatban van az R'- és a C-deriválhatóság. Ha a fenti gondolamenetet felfelé nézzük, akkor a h(z) korlátossága miatt a "korlátos szor nullához" tartó függvényt kapunk, így a szorzat határértéke 0. Persze ehhez kellene a "korlátos szor nullához tartó" lemma komplex szorzásra.

Ha lefelé gondolkodunk, akkor indirekten kell eljárnunk. Tegyük fel, hogy a második tényező nem nulla határértékű. Amikor nem létezik, vagy nem az adott szám a határérték, akkor "cáfoló" sorozatot szoktunk megadni. Az átviteli elv miatt létezik olyan z(n) konvergens komplex sorozat, mely nem a 0-hoz tart. De a h(z(n)) ekkor az egységkörön van, így a szorzat biztosan "elerüli a nullát" (az abszolút értéke nem a 0-hoz tart). Következésképpen:

Tétel. A definícióbeli f pontosan akkor komplex differenciálható, ha differenciálható és a deriváltja komplex szám (mátrix reprezentációja). Továbbá f pontosan akkor komplex differenciálható, ha differenciálható és a parciális deriváltjai teljesítik a Cauchy-Riemann-egyenleteket.

Feladat. Komplex deriváljuk az f(z) = zn függvényt!

Feladat. Komplex deriválható-e: \scriptstyle{f(z)=z\cdot\overline{z}}, vagy a \scriptstyle{f(z)=z^2\cdot\overline{z}}?

Feladat. Igazoljuk, hogy ha f korlátos komplex függvény a DC halmazon és limwg = 0, akkor limw fg = 0. (w ∈ int D).


Elemi függvények

Hatványfüggvények

A

w=z^n\,

típusú függvények komplex hatványfüggvények. nZ esetén, komplex deriváltjuk kiszámítható, n ≠ -1 esetben komplex primitív függvényük is van a következő értelemben:

Mivel

(z^n)'=nz^{n-1}\,

ezért n ≠ -1 esetén az az F(z) függvény, melyre  \scriptstyle{F'(z)=z^n} nem más, mint

F(z)=\frac{z^{n+1}}{n+1}+C\,

ahol C komplex konstans. n ≠ -1-re nincs primitív függvénye, mert a logaritmus nem egyértékű a komplex számok között.

Komplex vonalintegrál értelmezhető a G: [a,b] \to C folytonos függvény, mint görbe esetén azzal a különlegességgel, hogy a szorzás a komplex szorzás:

\int\limits_{G}f(z)\,\mathrm{d}z\,=_{\mathrm{def}}\lim\limits_{n \to \infty}\sum\limits_{i=1}^nf(z_i)\cdot\Delta z_i

Feltéve persze, hogy létezik és véges. Itt zi mindig a G görbe valamely pontját jelöli, amit az [a,b] egy felosztásának osztópontjainak G általi képeiből kapunk.

Ekkor fennáll a komplex Newton-Leibniz-formula. Ha a G görbe olyan nyílt halmazban halad, melyben az f-nek van primitív függvénye (egyértékű függvénye!) és f komplex integrálható, akkor z1 és z2 a végpontok esetén (a és b képe), a komplex integrál kiszámítható így:

F(z_2)-F(z_1)=\int\limits_{G}f(z)\,\mathrm{d}z\,

Ha a görbe belép az f értelmezési tartományának olyan részére, melyben a függvénynek nincs egyértelmű primitív függvénye, akkor az integrál értéke függhet a G úttól.

1. Feladat. Legyen G a 3 középpontú, 1 sugarú kör felső félköre (pozitív irányítással). Számítsuk ki a

\int\limits_{G}3z^2+1\,\mathrm{d}z\,

integrált.

2. Feladat. Legyen G az origó körüli 2 sugarú kör vonal. Mennyi az

a) \int\limits_{G}\frac{1}{z^2}\,\mathrm{d}z\, és a b) \int\limits_{G}\frac{z+1}{z}\,\mathrm{d}z\,

integrál.

A hatványfüggvények inverzei szintén nem egyértékű függvények.

Exponenciális függvény


e^z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^n}{n!}\,

Ebbőkkiderül az exponenciális függvény sok tulajdonsága. Például, ha z = x + iy, akkor

e^{x+iy}=e^x\cdot e^{iy}=e^x\cdot (\cos y + i\sin y)\,

Ebből rögtön következik, hogy komplex exponenciális függvény periodikus, periódusa a p = 2πi:

e^{z+2\pi i}=e^z\cdot e^{2\pi i}=e^z\cdot e^0\cdot (\cos 2\pi + i\sin 2\pi)=e^z(1+0i)\,

3. Feladat. Oldjuk meg az

e^z=1+i\;

egyenletet!

Írjuk át 1+i-t exponenciális alakba:

1+i=e^{\ln \sqrt{2}}\cdot e^{i\frac{\pi}{4}}\,

így

z=\ln\sqrt{2} +i\frac{\pi}{4}+2\pi i\,

4. Feladat. Oldjuk meg az

e^{iz}+ie^{-4iz}=0\,

egyenletet!

Komplex logaritmus és a reciprok integrálja

Tekintsük a

w=e^z\,

hozzárendelést! Ha w-t exponenciális alakban írjuk, megfeleltethetjük egymásnak a z algebrai alakját w trigonometrikus alakjával:

w=re^{i\varphi}=e^{x+iy}=e^x\cdot e^{iy}\,

azaz

r=e^x\, és \varphi= y\,

Ebből is látható, hogy a fordított leképezés végtelen sok értkű, hiszen ha y1 = 2π + y, akkor w(x+iy)= w(x+iy1 ). Ekkor a Riemann-felület egy végtelen sok Riemann-levélből áll.

Feladat. Számítsuk ki az alábbi integrálokat:

\int\limits_{G_1}\frac{1}{z}\,\mathrm{d}x
\int\limits_{G_2}\frac{1}{z}\,\mathrm{d}x

ahol G1 az egységkör a + irányban i-től -i-ig, G2 az egységkör a - irányban i-től -i-ig.

\int\limits_{i,\,(G_1)}^{-i}\frac{1}{z}\mathrm{d}z=[\mathrm{Log}(z)]_{i}^-i=\mathrm{Log}(e^{i\frac{3}{2}\pi})-\mathrm{Log}(e^{\frac{1}{2}\pi})=i\pi\,

ahol Log a logaritmus főrésze, hisz a görbe a egy Rieman-levélen belül marad, míg

\int\limits_{i,\,(G_2)}^{-i}\frac{1}{z}\mathrm{d}z=[\mathrm{Log}(z)]_{i}^-i=\mathrm{Log}(e^{-i\frac{1}{2}\pi})-\mathrm{Log}(e^{\frac{1}{2}\pi})=-i\pi\,

mivel itt áthalad a görbe a következő Riemann-levélre.

Más számítással:

\int\limits_{i,\,(G_1)}^{-i}\frac{1}{z}\mathrm{d}z=\int\limits_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}\frac{1}{z(t)}\cdot\frac{\mathrm{d}z(t)}{\mathrm{d}t}\,\mathrm{d}t=\int\limits_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}e^{-it}ie^{it}\mathrm{d}t=[it]_{t=\frac{\pi}{2}}^{\frac{3\pi}{2}}

Trigonometikus függvények

\sin z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^{2n+1}}{(2n+1)!}\,
\cos z=_{\mathrm{def}}\sum\limits_{n=0}^{\infty}\frac{z^{2n}}{(2n)!}\,

Világos, hogy valós φ-re:

e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)\,

A hiperbolikus függvényekhez hasonlóan a trigonometrikus függvények is előállnak de a komplex exponenciális segítségével:

\sin z=\frac{e^{iz}-e^{-iz}}{2i}
\cos z=\frac{e^{iz}+e^{-iz}}{2}

5. Feladat. Igazoljuk, hogy fennáll

\sin^2 z+ \cos^2z = 1\,

6. Feladat. Oldjuk meg az

\sin 4z=0\,

egyenletet!

Hiperbolikus függvények

\mathrm{sh}\, z=\frac{e^{z}-e^{-z}}{2}
\mathrm{ch}\, z=\frac{e^{z}+e^{-z}}{2}

7. Feladat. Határozzuk meg az w = sh(iz) függvény valós és képzetes részét!

Mo.

\mathrm{sh}\, iz=\frac{e^{iz}-e^{-iz}}{2}

8. Feladat. G az egységkör. Számítsuk ki

\int\limits_{(G)}\frac{e^z}{z}\mathrm{d}z\,
\int\limits_{(G)}\frac{\sin(z)}{z^4}\mathrm{d}z\,

Mo.

\int\limits_{(G)}\frac{1}{z}+1+\frac{1}{2}z+...\mathrm{d}z\,=2\pi i
\int\limits_{(G)}\frac{1}{z^3}-\frac{1}{2z}+\frac{1}{4!}z+...\mathrm{d}z\,=-\pi i