Matematika A3a 2008/6. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2013. október 31., 11:22-kor történt szerkesztése után volt.

<Matematika A3a 2008

C-differenciálhatóság

A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől

(w\cdot z)'=w\in \mathbf{C}
(z^2)'=2z\in \mathbf{C}

mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a

(\overline{z})'=(\begin{smallmatrix} 1 & 0\\0 & -1\end{smallmatrix})\notin \mathbf{C}

mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.

Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Jelölése: f'(z0).

Azt, hogy az f a z0-ban komplex deriválható még úgy is jelöljük, hogy

f\in \mathrm{Diff}_{\mathbf{C}}(z_0).

Pontbeli deriváltra példa a következő.

Példa. Milyen n egész számokra deriválható a 0-ban az alábbi függvény?

f(z)=\begin{cases}\overline{z}\cdot z^n, & z\ne 0\\
0, & z=0
\end{cases}

Mo. Ha n>0, akkor a különbségi hányados:

\frac{\overline{z}\cdot z^n-0}{z-0}=\frac{\overline{z}\cdot z^n}{z}=\overline{z}\cdot z^{n-1}\to 0 ha z \to 0.

Ha n = 0, akkor

\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=e^{i(-2\varphi)}

aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).

Ha n < 0, akkor

\frac{\overline{z}z^n-0}{z-0}=\frac{\overline{z}}{z^{-n+1}}=\frac{\overline{z}}{z}\frac{1}{z^{-n}}

ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.

Tehát n > 0-ra a függvény komplex deriválható a 0-ban, más n < 1-re nem deriválható.

Tétel. - A komplex differenciálhatóság jellemzése - Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:

1) f\in \mathrm{Diff}_{\mathbf{C}}(z_0)
2) f\in \mathrm{Diff}_{\mathbf{R}}(x_0,y_0) és [\mathrm{d}f(x_0,y_0)]\in\mathbf{C}.

Bizonyítás. Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény és w komplex szám. Tekintsük a következő határértéket:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-[w]\cdot (z-z_0)}{|z-z_0|}=0

ahol az z, z0, f(z), f(z0) mennyisegekre ugy tekintunk, mint vektorokra. Ez ekvivalens a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right|=0

ahol az elobb emlitettek mar algebrai ertelemben komplex szamok, nem feltetlenul vektorok. Azaz

\lim\limits_{z\to z_0}\left|\frac{z-z_0}{|z-z_0|}\left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right|=0

Itt (z-z0)/|z-z0| a komplex egységkörön "futó" függvény, hossza 1, ezért a fenti ekvivalnes a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-w\right|=0

Ami viszont ugyanakkor igaz mint:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol w a komplex derivált, akkor azt kapjuk, hogy a w mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z0)]=[w].

Másfelől, ha f valósan deriválható és a deriváltja a w komplex számot reprezentálja, akkor komplexen is deriválható es komplex derivaltja pont w.

Cauchy--Riemann-egyenletek A fenti tételben a [df(z)] ∈ C feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha f = u + iv és z = x +iy, akkor

\begin{cases}
\partial_xu=\partial_yv\\
\partial_yu=-\partial_x v
\end{cases}

Komplex deriváltfüggvény Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:

f'(z)=\partial_x u+\mathrm{i}\partial_xv=\partial_y v+\mathrm{i}\partial_xv=\partial_xu-\mathrm{i}\partial_yu=\partial_y v-\mathrm{i}\partial_yu

Definíció - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.

Feladat. Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?

Feladat. Legyen f(x + iy) = x2 + iy3. Hol komplex deriválható és hol reguláris f?


Harmonikus társ keresése

Azt mondjuk, hogy a kétszer differenciálható u=u(x,y) valós függvény harmonikus, ha

u_{xx}''+u_{yy}''\equiv \Delta u\equiv 0\,

itt Δ a Laplace-operátor (nem a Laplace-transzformátor!, hanem a vektoranalízisbeli vektormezőre Hesse-mátrix nyoma).

A C--R-egyenletek mutatják, hogy ha f=u+iv reguláris, akkor u és v harmonikus függvények. Ugyanis:

u_x'=v_y'\, és
v_x'=-u_y'\,

De u és v Hesse-mátrixa is szimmetrikus, ezért:

v_{yy}''=u_{xy}''=u_{yx}''=-v_{xx}''\,

azaz

\Delta v\equiv 0\, és fordítva.

Általában az a feladat, hogy ha adott u, akkor keressük az ő harmonikus társát, v-t, mellyel u+iv reguláris. Ha tehát adott u, akkor van F és G, hogy

F=v_y'\,
G=-v_x'\,

Ami az egzakt differenciálegynlet megoldásánál tanult parciális differenciálegyenlet megoldását igényli v-re, mint potenciálfüggvényre (ekkor f-et komplex pontenciálnak nevezzük, mármint a (v'x(x,y),vy'(x,y)) síkbeli vektormező komplex pontenciáljának; a v valódi pontenciálja lenne. Ennek szükséges utánanézni máshol is!)

1.. Keressünk harmonikus párt az

u=x^4+y^4-6x^2y^2\,

függvényhez!

Mo. Van neki, ha Δ=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.

Személyes eszközök