Matematika A3a 2008/7. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2008. november 6., 23:07-kor történt szerkesztése után volt.
(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)

<Matematika A3a 2008


Tartalomjegyzék

Cirkulációmentesség

Tétel. Ha a D tartományon értelmezett f függvénynek van primitív függvénye, akkor a körintegrál minden a D-ben haladó folytonosan differenciálható (ill. ilyenek véges összekapcsolásain) zárt görbén eltűnik:

\oint f=0\,

További információhoz akkor jutunk, ha a többváltozós analízis cirkuálciómentességi feltételeit vizsgáljuk. Ehhez a vissza kell vezetni a komplex integrált a vonalintegrálra.

Legyen f(z) = f(x,y) = u(x,y) + iv(x,y). Ekkor f felfogható R2 \supset\!\to R2 függvényként, melynek vonalintegrálja a

G:z(t)\equiv\mathbf{r}(t)=(x(t),y(t))\,

vonal mentén:

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x

amiben az

\mathbf{v}=\begin{pmatrix}u\\-v\end{pmatrix} és \mathbf{w}=\begin{pmatrix}v\\u\end{pmatrix}

vektorterek integráljai szerepelnek.

Vagy kétdimenziós felületi integrálként:

\mathbf{v}'=\begin{pmatrix}-v\\-u\end{pmatrix} és \mathbf{w}'=\begin{pmatrix}u\\-v\end{pmatrix}

Ugyanis a komplex vonalintegrált síkbeli felületi integrállá lehet alakítani:

\int \mathbf{v}\mathrm{d}\mathbf{A}=\int \mathbf{v}\times\mathrm{d}\mathbf{r}=\int v_1 \mathrm{d}y-v_2\mathrm{d}x


Gauss-tétel

Lássuk először Gauss-tételle, hogyan következtethetünk a körintegrál eltűnésére.

Gauss-tétel (R3-ra) Legyen v nyílt halmazon értelmezett C1-függvény, V egyszeresen összefüggő, mérhető térrész és legyen ennek ∂V határa kifelé irányított felület. Ha V a határával együtt Dom(v)-ben van, akkor

\oint\limits_{\partial V} \mathbf{v}\;\mathrm{d}\mathbf{A}=\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V

Az itt szereplő fogalmak közül néhányról beszélnünk kell.

Felület. Legyenek a φi:Di \to R3 függvények folytonosan differenciálhatóak és injektívek int(Di)-n, melyek mérhető tarományok R2-ben. Ha a képeik egymásba nem nyúlók, azaz int(φi(Di)) ∩ int(φj(Dj)) üres, ha ij, és a képek uniója összefüggő halmaz, akkor U Ran(φi)-t előállítottuk paraméteres felületként.

Példaként említhetjük a kúp paraméterezését:

\mathbf{r}_1(\varphi, h)=\left\{\begin{matrix} h\sin\vartheta\cos \varphi\\ h\sin\vartheta\sin\varphi\\ h\end{matrix}\right., ha φ ∈ [0,2π] és h ∈ [0,H]
\mathbf{r}_2(\varphi, h)=\left\{\begin{matrix}r\cos\varphi\\r\sin\varphi \\ H\end{matrix}\right., ha φ ∈ [0,2π] és r ∈ [0,R]

ahol H a kúp magassága, R az alapkörsugara, θ a félkúpszöge (z a tengelye, O a csúcsa). Tehát itt a paramétertartományok [0,2π] × [0,H] és [0,2π] × [0,R].

C1-ség. Ez azért kell, mert a térfogati integrált a D paramétertartományon a

\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V=\int\limits_{\mathbf{r}^{-1}(V)}\mathrm{div}\,\mathbf{v}(\mathbf{r}(u,v,w))|\mathrm{J}^{\mathbf{r}}(u,v,w)|\;\mathrm{d}u\mathrm{d}v\mathrm{d}w

képlettel számoljuk és ahhoz, hogy ez lézetten, ahhoz pl az kell, hogy ne csak az r = r(u,v,w) legyen folytonosan diff.-ható, de a divergencia is folytonos legyen.

Egyszeresen összefüggő tartomány. A G1: [a,b] \to R3 és a G2: [a,b] \to R3 görbék homotópak, ha létezik olyan F: [0,1] × [a,b] \to R3 folytonos függvény, hogy F(0,.) ≡ G1 és F(1,.) ≡ G2.Ez gyakorlatilag azt jelenti, hogy a G1 a G2-be folytonos transzformációval átvihető. Egyszeresen összefüggő egy tartomány, ha benne minden zárt görbe homotóp a konstans görbével.

Az egyszeres összefüggőség lényeges feltétel. Gondoljunk a v(r) = r/r3 vektortérre. Ennek divergenciája 0, de az origó körüli zárt gömbfelület integrálja 4π.

Gauss-tétel (R2-re) Legyen D egyszeresen összefüggő, mérhető síktartomány és legyen G ≡ r(t) ennek határát paraméterező zárt görbe. Ha v folytonosan R-differenciálható a D lezártján, akkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{A}=\int\limits_{D} \mathrm{div}\,(\mathbf{v})\mathrm{d}A

Így tehát a komplex vonalintegrál kiszámításához csak a v ' és w ' felületi integrálját kell kiszámítanunk, amihez a Gauss-tétel miatt beli divergenciákat kell kiszámítanunk:

\mathrm{div}\mathbf{v}'=-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}=0
\mathrm{div}\mathbf{w}'=\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}=0

Ami, a C-R-egyenletek miatt igaz.

Innen

\int\limits_{G}f(z)\mathrm{d}z=0

Stokes-tétel

Nézzük meg Stokes-tétellel is a bizonyítást.

Stokes-tétel (R3-ra) Legyen a nyílt halmazon értelmezett v vektorfüggvény folytonosan differenciálható, a Dom(v)-beli F felület pereme legyen a szintén Dom(v)-beli G zárt, F-nek megfelelően irányított görbe. Ekkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{F} \mathrm{rot}(\mathbf{v})\mathrm{d}\mathbf{F}

A térbeli cirkulációmentességre vonatkozó nevezetes tétel ezzel a tétellel kapcsoltos. Ebben az esetben, bár az egyszeres összefüggőség nincs megkötve Dom(v)-re vonatkozólag, előjön a következményében:

Következmény. Ha az egyszeresen összefűggő D nyílt halmazon értelmezett v vektortér folytonosan differenciálható, akkor az alábbi három kijelentés ekvivaléens egymással:

  1. rot v eltűnik D-n.
  2. minden D-ben haladó zárt görbén a v körintegrálja nulla
  3. létezik v-nek D-n potenciálja, azaz olyan Φ : D \to R3 függvény, melyre grad Φ = v.

Itt az egyszeres összefüggőség azért kell, mert annyit biztosan tudunk, hogy ilyen esetben a zárt görbéhez található olyan felület, mely a tartományban halad és pereme a görbe.

Stokes-tétel (R2-re) Legyen a D síkbeli felület határán a G zárt görbe ( r(t) ). Ha v folytonosan R-differenciálható, akkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{D} \mathrm{rot}(\mathbf{v})\mathrm{d}A

Világos, hogy a D tartománynak egyszeresen összefüggőnek kell lennie ahhoz, hogy a G a határa legyen a D-nek. Ekkor csak a rotációt kell kiszámítanunk:

\mathrm{rot}\mathbf{v}=\frac{\partial u}{\partial y} - \left(-\frac{\partial v}{\partial x}\right)=0
\mathrm{rot}\mathbf{w}=\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}=0

Ami, a C-R-egyenletek miatt igaz.

Goursat-lemma, Cauchy-féle integráltétel

Goursat ennél is mélyebb eredményt talált:


Goursat-lemma. A T háromszöglapon reguláris f komplex függvény integrálja a háromszög határán nulla:

\oint\limits_{\partial T}f=0\,

Innen már könnyen adódik a komplex analízis főtétele, melyet először Cauchy modott ki ugyan csak folytonosan diffható komplex függvényre, de Goursat ezt megfejelte a gyengített feltételével:

Főtétel. Ha a D tartományon egyszeresen összefüggő tartoányon reguláris az f komplex függvény, akkor a tartományban minden zárt G görbén a függvény integrálja nulla:

\oint\limits_{G} f=0\,
Személyes eszközök