Matematika A3a 2008/7. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2013. november 1., 10:00-kor történt szerkesztése után volt.

<Matematika A3a 2008

Tartalomjegyzék

Komplex integrál

Görbék a komplex síkon

Ha a Γ C-beli halmaz olyan, hogy van olyan G:[a,b]\toC, t\mapstoz(t) folytonos, veges sok kivetellel folytonosan differenciálható fuggveny, aminek az ertekkeszlete Γ, akkor Γ-t görbének nevezzük. A Γ görbe egyszerű, ha nem metszi át saját magát, azaz minden t1, t2-re, ha z(t1) = z(t2), akkor t1 = t2. G zárt, ha z(a) = z(b). A görbe t-beli irányvektorán a

\dot{z}(t)=\dot{x}(t)+\mathrm{i}\dot{y}(t)

komplex számot értjük.

Tobb parameterezes is elo tudja allitani a Γ gorbet. Ezek kozul kettot, a z1-et es a z2-t ekvivalensnek nevezunk, ha van olyan g:[a,b]\to[c,d] folytonos valos fuggveny, ami (a,b)-n differencialhato, g'>0 es z_2=z_1\circ g. Az osszes parameterezesek halmaza ket osztalyra esik szet, ezek a gorbe ellentetes parameterezeseit adjak.

Példák

1. Legyen t∈[a,b]-re z(t) = x(t) + iy(t) olyan, hogy x(t) = x0 + w1t és y(t) = y0 + w2t, azaz z(t) = z0 + wt. Ekkor z(t) egy egyenes szakasz.

És ekkor:

\dot{z}(t)=w

2. Az origó középpontú R sugarú kör:

z(t) = Reit t∈[0,2π]

És ekkor

\dot{z}(t)=R\mathrm{i}e^{\mathrm{i}t}

hiszen

\dot{z}(t)=R\dot{\cos(t)+\mathrm{i}\sin(t)}=-R\sin(t)+\mathrm{i}R\cos(t)=\mathrm{i}(R\mathrm{i}\sin(t)+R\cos(t))

Komplex vonalmenti integrál

Definíció. Ha G:[a,b]\toC görbe és f olyan komplex függvény, melyre Ran(G)⊆Dom(f), és f folytonos, akkor belátható, hogy létezik a

\begin{matrix}
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 & n\to \infty & \\
 & \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 & |\Delta z_i|\to 0 &  
\end{matrix}

határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok zi pontot, melyek a szigorúan monoton (ti)-khez tartoznak a zi = z(ti) definícióval. Ezen [z(ti),z(ti + 1)] görbeszakaszokon belül felvettük tetszőlegesen a ζi közbülső pontokat, és a Δzi=[z(ti),z(ti + 1)] szakaszokkal elkészítettük az f(ζi)Δzi komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény G-re vett komplex integrálja.


Kiszámítási formula. Belátható, hogy a fenti integrál a következőkkel egyenlő:


\int\limits_{G}f(z)\mathrm{d}z=\int\limits_{a}^b f(z(t))\cdot \dot{z}(t)\,\mathrm{d}t

Megjegyzes A helyettesiteses integralas tetelenek felhasznalasaval belathato, hogy ez az integral fuggetlen a parametertezestol, ha azok ugyanazt az iranyitast hatarozzak meg.

Megj. A kiszamitasi formulaban skalarvaltozos vektorerteku fuggveny integralja szerepel. Ezt a kovetkezokeppen kell kiszamitani:

\int\limits_a^b\begin{pmatrix}f_1(t)\\f_2(t)\end{pmatrix}\,dt=\begin{pmatrix}\int\limits_a^b f_1(t) \,dt\\ \int\limits_a^b  f_2(t)\,dt\end{pmatrix}

Példa

1. Legyen G a komplex egységkör pozitívan irányítva.

\int\limits_{|z|=1}\frac{1}{z}\mathrm{d}z=\int\limits_{0}^{2\pi} \frac{1}{e^{\mathrm{i}t}}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{2\pi} \mathrm{i}\,\mathrm{d}t=2\pi\mathrm{i}

Ahol a valós Newton--Leibniz-formulát alkalmaztuk a komponensfüggvényekre.

2. Legyen G a z(t)=(1+2i)t, ahol t∈[0,1].

\int\limits_{G}\overline{z}\mathrm{d}z=\int\limits_{0}^{1} (1-2\mathrm{i})t\cdot (1+2\mathrm{i})\,\mathrm{d}t=\int\limits_{0}^{1}5t\,\mathrm{d}t=\frac{5}{2}

3. Legyen G a komplex egységkör felső fele, pozitívan irányítva.

\int\limits_{|z|=1,\mathrm{Im}(z)\geq 0}\overline{z}^2\mathrm{d}z=\int\limits_{0}^{\pi}e^{-2\mathrm{i}t}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{\pi}e^{-\mathrm{i}t}\,\mathrm{d}t=1-(-1)=2

Komplex Newton--Leibniz-formula

Ha az f komplex függvény, olyan, hogy van olyan komplex differenciálható F, melyre F'=f, akkor azt mondjuk, hogy az F az f primitív függvénye.

Komplex Newton--Leibniz-formula. Ha a nyílt halmazon értelmezett f komplex függvénynek primitív függvénye az F, akkor minden az f értelmezési tartományában haladó G:[a,b]\toC görbére:

\int\limits_{G}f(z)\,\mathrm{d}z=F(b)-F(a)

(Ha még nem tudjuk, hogy reguláris függvény analitikus, akkor f-ről fel kell tennünk, hogy folytonos.)

4. Legyen f(z)=\frac{1}{z^2}. Mi az egységkörre az integrálja?

F(z)=-\frac{1}{z}

primitívfüggvénye f-nek, ezért

\int\limits_{|z|=1}\frac{1}{z^2}\,\mathrm{d}z=0

hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.

Bizonyitas. A vonalintegrálra vonatkozó Newton--Leibniz-tétel (I. gradiens tétel) a következő: ha Φ folytonosan differenciálható, az értelmezési tartományában haladó G görge végpontjai: a és b, akkor

\int\limits_{G}\mathrm{grad}\,\Phi\mathrm{d}\mathbf{r}=\Phi(b)-\Phi(a)

Ezt a segédvektormezőkre fogjuk alkalmazni.

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x=
=\int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} v\mathrm{d }x+u\mathrm{d}y
F = Φ + iΨ
f=F'=\partial_x\Phi+i\partial_y(-\Phi)=u+vi
f=F'=\partial_y(\Psi)+i\partial_x(\Psi)=u+vi
\mathrm{grad}\,\Phi = (u,-v)
\mathrm{grad}\,\Psi = (v,u)
=\int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} v\mathrm{d }x+u\mathrm{d}y=\Phi(b)-\Phi(a)+i(\Psi(b)-\Psi(a))

u,v folytonos differenciálhatósága sajnos csak egy későbbi tétel következménye, miszerint reguláris függvény analitikus. Addig a tételben ideiglenesen ki kell kötnünk, hogy f folytonos.

Tétel. Ha a D nyílt halmazon értelmezett f függvénynek van primitív függvénye, akkor f körintegrálja minden a D-ben haladó zárt görbére nulla:

\oint\limits_{G} f=0\,

További információhoz akkor jutunk, ha a többváltozós analízis cirkulációmentességi feltételeit vizsgáljuk. Ehhez a vissza kell vezetni a komplex integrált a vonalintegrálra.

Cirkulációmentesség

Visszavezetés valós vonalintegrálra es feluleti integralra

Az integrál kifejezhető vonalintegrállal. Ha ugyanis f= u + iv, akkor az f=(u,v) vektormezőnek olyan differenciálforma szerinti integrálja a komplex pályamenti integrál, mely az f=(u,v) vektor és a dz=(dx,dy) infinitezimális elmozdulásvektor komplex szorzásaként jön létre:

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x

Ebben a felírásban az (u,-v) és (v,u) olyan segédvektormezők, melyek vonalintegráljai adják meg a komplex integrál valós és képzetes részét. Tehát az integrált a

\mathbf{P}=\begin{pmatrix}u\\-v\end{pmatrix} és \mathbf{Q}=\begin{pmatrix}v\\u\end{pmatrix}

segédvektormezők síkbeli vonalintegráljai

\int\limits_{G}\mathbf{P}\,\mathrm{d}\mathbf{r}+i\int\limits_{G}\mathbf{Q}\,\mathrm{d}\mathbf{r}

vagy

\mathbf{P}'=\begin{pmatrix}-v\\-u\end{pmatrix} és \mathbf{Q}'=\begin{pmatrix}u\\-v\end{pmatrix}

segédvektormezők síkbeli felületi integráljai

\int\limits_{F}\mathbf{P}'\,\mathrm{d}\mathbf{f}+i\int\limits_{F}\mathbf{Q}'\,\mathrm{d}\mathbf{f}

szolgáltatják.

Itt érdemes feleleveníteni, hogy az v = (v1, v2) síkvektormező felületi integráljat a (v1, v2)(df1, df2) "differencialforma" integralasa adja. Itt az infinitezimalis feluletelem (df1, df2)=(dy,-dx).

\int\limits_{F} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int\limits_{F} v_1 \mathrm{d}y-v_2\mathrm{d}x.

Gauss-tétel

Lássuk először Gauss-tétellel, hogyan következtethetünk a körintegrál eltűnésére.

Gauss-tétel (R3-ra) Legyen v nyílt halmazon értelmezett C1-függvény, V merheto, peremes térrész és legyen ennek pereme a ∂V kifelé irányított felület. Ha V a peremével együtt Dom(v)-ben van, akkor

\oint\limits_{\partial V} \mathbf{v}\;\mathrm{d}\mathbf{f}=\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V

Megjegyzes. Az itt szereplő fogalmak közül néhányról beszélnünk kell.

Felület. Legyenek a φi:Di \to R3 függvények folytonosan differenciálhatóak és injektívek int(Di)-n, melyek mérhető tartományok R2-ben. Ha a képeik egymásba nem nyúlók, azaz int(φi(Di)) ∩ int(φj(Dj)) üres, ha ij, és a képek uniója összefüggő halmaz, akkor U Ran(φi)-t előállítottuk paraméteres felületként.

Példaként említhetjük a kúp paraméterezését:

\mathbf{r}_1(\varphi, h)=\left\{\begin{matrix} h\sin\vartheta\cos \varphi\\ h\sin\vartheta\sin\varphi\\ h\end{matrix}\right., ha φ ∈ [0,2π] és h ∈ [0,H]
\mathbf{r}_2(\varphi, h)=\left\{\begin{matrix}r\cos\varphi\\r\sin\varphi \\ H\end{matrix}\right., ha φ ∈ [0,2π] és r ∈ [0,R]

ahol H a kúp magassága, R az alapkörsugara, θ a félkúpszöge (z a tengelye, O a csúcsa). Tehát itt a paramétertartományok [0,2π] × [0,H] és [0,2π] × [0,R].

C1-ség. Ez azért kell, mert a térfogati integrált a D paramétertartományon a

\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V=\int\limits_{\mathbf{r}^{-1}(V)}\mathrm{div}\,\mathbf{v}(\mathbf{r}(u,v,w))|\mathrm{J}^{\mathbf{r}}(u,v,w)|\;\mathrm{d}u\mathrm{d}v\mathrm{d}w

képlettel számoljuk és ahhoz, hogy ez létezzen, ahhoz pl. az kell, hogy ne csak az r = r(u,v,w) legyen folytonosan diff.-ható, de a divergencia is folytonos legyen.

Gauss-tétel (R2-re) Legyen D mérhető peremes síkrész, melynek perme, azaz a ∂D halmaz kifelé irányított síkbeli felület. Ha v nyílt halmazon értelmezett folytonosan R-differenciálható és Dom(v) tartalmazza D lezártját, akkor

\oint\limits_{\partial D} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int\limits_{D} \mathrm{div}\,(\mathbf{v})\mathrm{d}\mathbf{A}

ahol ∫df kétdimenziós felületi integrált jelöl, ∫dA pedig kétdimenziós tartományi integrált.

Így tehát a komplex vonalintegrál kiszámításához csak a P' és Q' felületi integrálját kell kiszámítanunk, amihez a Gauss-tétel miatt beli divergenciákat kell kiszámítanunk:

\mathrm{div}\mathbf{v}'=-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}=0
\mathrm{div}\mathbf{w}'=\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}=0

Ami, a C-R-egyenletek miatt igaz.

Innen

\int\limits_{G}f(z)\mathrm{d}z=0

Stokes-tétel

Nézzük meg Stokes-tétellel is a bizonyítást.

Stokes-tétel (R3-ra) Legyen a nyílt halmazon értelmezett v vektorfüggvény folytonosan differenciálható, a Dom(v)-beli F felület pereme legyen a szintén Dom(v)-beli G zárt, F-nek megfelelően irányított görbe. Ekkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{F} \mathrm{rot}\,\mathbf{v}\,\mathrm{d}\mathbf{F}

Megjegyzes. A térbeli cirkulációmentességre vonatkozó nevezetes tétel ezzel a tétellel kapcsolatos. Ebben az esetben, bár az egyszeres összefüggőség nincs megkötve Dom(v)-re vonatkozólag, előjön a következményében:

Következmény. Ha az egyszeresen összefűggő D nyílt halmazon értelmezett v vektortér folytonosan differenciálható, akkor az alábbi három kijelentés ekvivalens egymással:

  1. rot v eltűnik D-n.
  2. minden D-ben haladó zárt görbén a v körintegrálja nulla
  3. létezik v-nek D-n potenciálja, azaz olyan Φ : D \to R3 függvény, melyre grad Φ = v.

Itt az egyszeres összefüggőség azért kell, mert annyit biztosan tudunk, hogy ilyen esetben a zárt görbéhez található olyan felület, mely a tartományban halad és pereme a görbe.

Stokes-tétel (R2-re) Legyen a D síkbeli tartomany határán a G zárt görbe ( r(t) ). Ha v folytonosan R-differenciálható, akkor

\oint\limits_{G} \mathbf{v}(\mathbf{r})\mathrm{d}\mathbf{r}=\int\limits_{D} \mathrm{rot}(\mathbf{v})\mathrm{d}A

Világos, hogy a D tartománynak egyszeresen összefüggőnek kell lennie ahhoz, hogy a G a határa legyen a D-nek. Ekkor csak a rotációt kell kiszámítanunk:

\mathrm{rot}\mathbf{v}=\frac{\partial u}{\partial y} - \left(-\frac{\partial v}{\partial x}\right)=0
\mathrm{rot}\mathbf{w}=\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}=0

Ami, a C-R-egyenletek miatt igaz.


Goursat-lemma, Cauchy-féle integráltétel

Goursat ennél is mélyebb eredményt talált:


Goursat-lemma. A T háromszöglapon reguláris f komplex függvény integrálja a háromszög határán nulla:

\oint\limits_{\partial T}f=0\,

Bizonyitas. A haromszoget osszuk fel 4 egybevago haromszogre: Δ=Δ1∪Δ2∪Δ3∪Δ4. Ha jol iranyitjuk a kis haromszogek hatarat, akkor

\int\limits_{\Delta}f=\int\limits_{\Delta_1}f+\int\limits_{\Delta_2}f+\int\limits_{\Delta_3}f+\int\limits_{\Delta_4}f

Ezt felulbecsulhetjuk a kovetkezovel:

\left|\int\limits_{\Delta}f\right|\leq\sum\limits_{i=1}^4\left|\int\limits_{\Delta_i}f\right|\leq 4\max\limits_{i=1}^4\left|\int\limits_{\Delta_i}f\right|=4\left|\int\limits_{\Delta^{(1)}}f\right|

most Δ(1)-et bontjuk fel es folytatva a felosztast egy nullahoz tarto nagysagu haromszogekbol allo egymasba skatulyazott (Δ(n)) haromszogsorozatot kapunk, mely egy ponthoz, a z0-hoz tart. A haromszogek kerulete K/2n, ha K az eredeti haromszog kerulete. Erra a sorozatra tovabba:

\left|\int\limits_{\Delta}f\right|\leq 4^n\left|\int\limits_{\Delta^{(n)}}f\right|

igaz.

Most felhasznaljuk a komplex differencialhatosagot. Tetszoleges ε>0 szamra van olyan kornyezete z0-nak, es a haromszogsorozatnak olyan N indexe, melyre az n-edik tagok mar a kornyezetben vannak es az alabbi formulaban az |ε(z)|<ε:

f(z)-f(z_0)-f'(z_0)(z-z_0)-\varepsilon(z)(z-z_0)

Ezt integralva a haromszogre:

|\int\limits_{\Delta^{(n)}}f(z)|=|\int\limits_{\Delta^{(n)}}f(z_0)+f'(z_0)(z-z_0)+\varepsilon(z)(z-z_0)\,dz|=|\int\limits_{\Delta^{(n)}}\varepsilon(z)(z-z_0)\,dz|=

Itt az utolso kifejezest az ivhossz integrallal felulbecsuljuk:

\leq\int\limits_{\Delta^{(n)}}|\varepsilon(z)||(z-z_0)|\,d|z|<\varepsilon K^2/4^n

Mivel ε tetszoleges volt, ezert az integral eltunik.

Innen már könnyen adódik a komplex analízis főtétele, melyet először Cauchy modott ki ugyan csak folytonosan diffható komplex függvényre, de Goursat ezt megfejelte a gyengített feltételével:

Főtétel. Ha a D egyszeresen összefüggő tartományon reguláris az f komplex függvény, akkor a tartományban minden zárt G egyszeru görbén a függvény integrálja nulla:

\oint\limits_{G} f=0\,

Nehany topologiai fogalom

Egy D nyilt halmaz C-ben egyszeresen osszefuggo, ha benne minden zart gorbe pontra deformalhato. Ez utobbi a kovetkezot jelenti. Azt mondjuk, hogy a γ:[a,b]\toD zart gorbe a z0 D-beli pontra deformalhato a D tartomanyban, ha letezik olyan Γ:[0,1]\to D[a,b] gorbe erteku fuggveny, melyre Γ(1)=γ, Γ(0)=z0 konstans gorbe es Γ az [a,b] es D[a,b] terek kozott hato folytonos lekepezes a szupremumnorma szerint.

Csillagszeru egy H halmaz C-ben, ha van olyan H-beli pont c pont, hogy barmely H-beli z pontra a [cz] szakasz H-ban van.

Pelda. Egy csillagszeru tartomany egyszeresen osszefuggo, mert a csillagpontra valo [0,1]-beli aranyszammal parameterezett kozeppontos kicsinyites kepei alkotta parameteres gorbesereg ilyen.

Személyes eszközök