Matematika A3a 2008/8. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Példák)
(Komplex vonalmenti integrál)
21. sor: 21. sor:
 
===Komplex vonalmenti integrál===
 
===Komplex vonalmenti integrál===
 
Ha ''G'':[a,b]<math>\to</math>'''C''' görbe és f olyan komplex függvény, melyre Ran(G)&sube;Dom(f), és f folytonos, akkor belátható, hogy létezik a
 
Ha ''G'':[a,b]<math>\to</math>'''C''' görbe és f olyan komplex függvény, melyre Ran(G)&sube;Dom(f), és f folytonos, akkor belátható, hogy létezik a
 +
 +
:<math>\begin{matrix}
 +
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 +
& n\to \infty & \\
 +
& \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 +
& |\Delta z_i|\to 0 & 
 +
\end{matrix}</math>
 +
határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok <math>z_i</math> pontot, melyek a szigorúan monoton (<math>t_i</math>)-khez tartoznak a <math>z_i=z(t_i)</math> definícióval. Ezen <math>[z(t_i),z(t_{i+1})]</math> görbeszakaszokon belül felvettük tetszőlegesen a &zeta;<sub>i</sub> közbülső pontokat, és a &Delta;z<sub>i</sub>=<math>[z(t_i),z(t_{i+1})]</math> szakaszokkal elkészítettük az f(&zeta;<sub>i</sub>)&Delta;z<sub>i</sub> komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény ''G''-re vett komplex integrálja.
 +
 +
Az integrál definíció helyett kifejezhető vonalintegrál és kiszámítási formula segítségével is.
 +
 +
1. Ha ugyanis f= u + iv, akkor az f=(u,v) vektormezőnek olyan differenciálforma szerinti integrálja a komplex pályamenti integrál, mely az f=(u,v) vektor és a dz=(dx,dy) infinitezimális elmozdulásvektor komplex szorzásaként jön létre:
 +
:<math>\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x</math>
 +
Ebben a felírásban az (u,-v) és (v,u) olyan segédvektormezők, melyek vonalintegráljai adják meg a komplex integrál valós és képzetes részét. Tehát az integrált a 
 +
:<math>\mathbf{P}=\begin{pmatrix}u\\-v\end{pmatrix}</math> és <math>\mathbf{Q}=\begin{pmatrix}v\\u\end{pmatrix}</math>
 +
segédvektormezők síkbeli '''vonalintegráljai''', vagy a
 +
:<math>\mathbf{P}'=\begin{pmatrix}-v\\-u\end{pmatrix}</math> és <math>\mathbf{Q}'=\begin{pmatrix}u\\-v\end{pmatrix}</math>
 +
segédvektormezők síkbeli '''felületi integráljai''' szolgáltatják.
 +
 +
Itt érdemes feleleveníteni, hogy az '''S''' = (<math>s_1</math>, <math>s_2</math>) síkvektormező felületi integrálja nem más, mint a (<math>-s_2</math>, <math>s_1</math>) vektormező vonalintegrálja (a megfelelő irányítással).
 +
 +
:<math>\int\limits_{F} \mathbf{S}\,\mathrm{d}\mathbf{f}=\int\limits_{''F''} s_1 \mathrm{d}y-s_2\mathrm{d}x</math>
 +
megfelelő módon irányítva az F felületet, ill ennek "F" görbe mivoltát. 
 +
 +
(Azaz a s_2dx - s_1 dy differenciálforma integrálja. ''Differenciálforma'' -- nemes egyszerűséggel -- egy olyan kifejezése, ahol dx, dy, dz-k és egy vektormező komponensei vannak összeszorozva-összeadva.)

A lap 2012. november 3., 23:36-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Komplex integrál

Görbék a komplex síkon

Ha G:[a,b]\toC, t\mapstoz(t) folytonosan differenciálható, akkor G-t görbének nevezzük. (Esetleg a folytonos, véges sok helyen nem folytonosan differenciálható előbbi G-ket is görbéknek nevezzük.) A G görbe egyszerű, ha nem metszi át saját magát, azaz minden t1, t2-re, ha z(t1) = z(t2), akkor t1 = t2. G zárt, ha z(a) = z(b). A görbe t-beli irányvektorán a

\dot{z}(t)=\dot{x}(t)+\mathrm{i}\dot{y}(t)

komplex számot értjük.

Példák

1. Legyen t∈[a,b]-re z(t) = x(t) + iy(t) olyan, hogy x(t) = x0 + w1t és y(t) = y0 + w2t, azaz z(t) = z0 + wt. Ekkor z(t) egy egyenes szakasz.

És ekkor:

\dot{z}(t)=w

2. Az origó középpontú R sugarú kör:

z(t) = Reit t∈[0,2π]

És ekkor

\dot{z}(t)=R\mathrm{i}e^{\mathrm{i}t}

hiszen

\dot{z}(t)=R\dot{\cos(t)+\mathrm{i}\sin(t)}=-R\sin(t)+\mathrm{i}R\cos(t)=\mathrm{i}(R\mathrm{i}\sin(t)+R\cos(t))

Komplex vonalmenti integrál

Ha G:[a,b]\toC görbe és f olyan komplex függvény, melyre Ran(G)⊆Dom(f), és f folytonos, akkor belátható, hogy létezik a

\begin{matrix}
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 & n\to \infty & \\
 & \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 & |\Delta z_i|\to 0 &  
\end{matrix}

határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok zi pontot, melyek a szigorúan monoton (ti)-khez tartoznak a zi = z(ti) definícióval. Ezen [z(ti),z(ti + 1)] görbeszakaszokon belül felvettük tetszőlegesen a ζi közbülső pontokat, és a Δzi=[z(ti),z(ti + 1)] szakaszokkal elkészítettük az f(ζi)Δzi komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény G-re vett komplex integrálja.

Az integrál definíció helyett kifejezhető vonalintegrál és kiszámítási formula segítségével is.

1. Ha ugyanis f= u + iv, akkor az f=(u,v) vektormezőnek olyan differenciálforma szerinti integrálja a komplex pályamenti integrál, mely az f=(u,v) vektor és a dz=(dx,dy) infinitezimális elmozdulásvektor komplex szorzásaként jön létre:

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x

Ebben a felírásban az (u,-v) és (v,u) olyan segédvektormezők, melyek vonalintegráljai adják meg a komplex integrál valós és képzetes részét. Tehát az integrált a

\mathbf{P}=\begin{pmatrix}u\\-v\end{pmatrix} és \mathbf{Q}=\begin{pmatrix}v\\u\end{pmatrix}

segédvektormezők síkbeli vonalintegráljai, vagy a

\mathbf{P}'=\begin{pmatrix}-v\\-u\end{pmatrix} és \mathbf{Q}'=\begin{pmatrix}u\\-v\end{pmatrix}

segédvektormezők síkbeli felületi integráljai szolgáltatják.

Itt érdemes feleleveníteni, hogy az S = (s1, s2) síkvektormező felületi integrálja nem más, mint a (s2, s1) vektormező vonalintegrálja (a megfelelő irányítással).

\int\limits_{F} \mathbf{S}\,\mathrm{d}\mathbf{f}=\int\limits_{''F''} s_1 \mathrm{d}y-s_2\mathrm{d}x

megfelelő módon irányítva az F felületet, ill ennek "F" görbe mivoltát.

(Azaz a s_2dx - s_1 dy differenciálforma integrálja. Differenciálforma -- nemes egyszerűséggel -- egy olyan kifejezése, ahol dx, dy, dz-k és egy vektormező komponensei vannak összeszorozva-összeadva.)

Személyes eszközök