Matematika A3a 2008/8. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Komplex Newton--Leibniz-formula)
(Komplex Newton--Leibniz-formula)
67. sor: 67. sor:
 
Például:
 
Például:
  
'''4.''' <math>Legyen f(z)=\frac{1}{z^2}</math>. Mi az egységkörre az integrálja?
+
'''4.''' Legyen <math>f(z)=\frac{1}{z^2}</math>. Mi az egységkörre az integrálja?
 
:<math>F(z)=-\frac{1}{z}</math>
 
:<math>F(z)=-\frac{1}{z}</math>
 
primitívfüggvénye f-nek, ezért  
 
primitívfüggvénye f-nek, ezért  
 
:<math>\int\limits_{|z|=1}\frac{1}{z^2}\mathrm{d}z=0</math>
 
:<math>\int\limits_{|z|=1}\frac{1}{z^2}\mathrm{d}z=0</math>
 
hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.
 
hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.

A lap 2012. november 4., 00:16-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Komplex integrál

Görbék a komplex síkon

Ha G:[a,b]\toC, t\mapstoz(t) folytonosan differenciálható, akkor G-t görbének nevezzük. (Esetleg a folytonos, véges sok helyen nem folytonosan differenciálható előbbi G-ket is görbéknek nevezzük.) A G görbe egyszerű, ha nem metszi át saját magát, azaz minden t1, t2-re, ha z(t1) = z(t2), akkor t1 = t2. G zárt, ha z(a) = z(b). A görbe t-beli irányvektorán a

\dot{z}(t)=\dot{x}(t)+\mathrm{i}\dot{y}(t)

komplex számot értjük.

Példák

1. Legyen t∈[a,b]-re z(t) = x(t) + iy(t) olyan, hogy x(t) = x0 + w1t és y(t) = y0 + w2t, azaz z(t) = z0 + wt. Ekkor z(t) egy egyenes szakasz.

És ekkor:

\dot{z}(t)=w

2. Az origó középpontú R sugarú kör:

z(t) = Reit t∈[0,2π]

És ekkor

\dot{z}(t)=R\mathrm{i}e^{\mathrm{i}t}

hiszen

\dot{z}(t)=R\dot{\cos(t)+\mathrm{i}\sin(t)}=-R\sin(t)+\mathrm{i}R\cos(t)=\mathrm{i}(R\mathrm{i}\sin(t)+R\cos(t))

Komplex vonalmenti integrál

Definíció. Ha G:[a,b]\toC görbe és f olyan komplex függvény, melyre Ran(G)⊆Dom(f), és f folytonos, akkor belátható, hogy létezik a

\begin{matrix}
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 & n\to \infty & \\
 & \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 & |\Delta z_i|\to 0 &  
\end{matrix}

határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok zi pontot, melyek a szigorúan monoton (ti)-khez tartoznak a zi = z(ti) definícióval. Ezen [z(ti),z(ti + 1)] görbeszakaszokon belül felvettük tetszőlegesen a ζi közbülső pontokat, és a Δzi=[z(ti),z(ti + 1)] szakaszokkal elkészítettük az f(ζi)Δzi komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény G-re vett komplex integrálja.

Visszavezetés valós vonalintegrálra. Az integrál kifejezhető vonalintegrállal. Ha ugyanis f= u + iv, akkor az f=(u,v) vektormezőnek olyan differenciálforma szerinti integrálja a komplex pályamenti integrál, mely az f=(u,v) vektor és a dz=(dx,dy) infinitezimális elmozdulásvektor komplex szorzásaként jön létre:

\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x

Ebben a felírásban az (u,-v) és (v,u) olyan segédvektormezők, melyek vonalintegráljai adják meg a komplex integrál valós és képzetes részét. Tehát az integrált a

\mathbf{P}=\begin{pmatrix}u\\-v\end{pmatrix} és \mathbf{Q}=\begin{pmatrix}v\\u\end{pmatrix}

segédvektormezők síkbeli vonalintegráljai, vagy a

\mathbf{P}'=\begin{pmatrix}-v\\-u\end{pmatrix} és \mathbf{Q}'=\begin{pmatrix}u\\-v\end{pmatrix}

segédvektormezők síkbeli felületi integráljai szolgáltatják.

Itt érdemes feleleveníteni, hogy az S = (s1, s2) síkvektormező felületi integrálja nem más, mint a (s2, s1) vektormező vonalintegrálja (a megfelelő irányítással).

\int\limits_{F} \mathbf{S}\,\mathrm{d}\mathbf{f}=\int\limits_{''F''} s_1 \mathrm{d}y-s_2\mathrm{d}x

megfelelő módon irányítva az F felületet, ill ennek "F" görbe mivoltát.

(Azaz a s_2dx - s_1 dy differenciálforma integrálja. Differenciálforma -- nemes egyszerűséggel -- egy olyan kifejezése, ahol dx, dy, dz-k és egy vektormező komponensei vannak összeszorozva-összeadva.)

Kiszámítási formula. Belátható, hogy a fenti integrál a következőkkel egyenlő:


\int\limits_{G}f(z)\mathrm{d}z=\int\limits_{a}^b f(z(t))\cdot \dot{z}(t)\,\mathrm{d}t

Példa

1. Legyen G a komplex egységkör pozitívan irányítva.

\int\limits_{|z|=1}\frac{1}{z}\mathrm{d}z=\int\limits_{0}^{2\pi} \frac{1}{e^{\mathrm{i}t}}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{2\pi} \mathrm{i}\,\mathrm{d}t=2\pi\mathrm{i}

Ahol a valós Newton--Leibniz-formulát alkalmaztuk a komponensfüggvényekre.

2. Legyen G a z(t)=(1+2i)t, ahol t∈[0,1].

\int\limits_{G}\overline{z}\mathrm{d}z=\int\limits_{0}^{1} (1-2\mathrm{i})t\cdot (1+2\mathrm{i})\,\mathrm{d}t=\int\limits_{0}^{1}5t\,\mathrm{d}t=5

3. Legyen G a komplex egységkör felső fele, pozitívan irányítva.

\int\limits_{|z|=1,\mathrm{Im}(z)\leq 0}\overline{z}^2\mathrm{d}z=\int\limits_{0}^{\pi}e^{-2\mathrm{i}t}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{\pi}e^{-\mathrm{i}t}\,\mathrm{d}t=1-(-1)=2

Komplex Newton--Leibniz-formula

Ha az f komplex függvény, olyan, hogy van olyan komplex differenciálható F, melyre F'=f, akkor azt mondjuk, hogy a F az f primitív függvénye.

Komplex Newton--Leibniz-formula. Ha a nyílt halmazon értelmezett f komplex függvénynek primitív függvénye az F és f folytonos, akkor minden az f értelmezési tartományában haladó G:[a,b]\toC görbére:

\int\limits_{G}\overline{z}\mathrm{d}z=F(b)-F(a)

Például:

4. Legyen f(z)=\frac{1}{z^2}. Mi az egységkörre az integrálja?

F(z)=-\frac{1}{z}

primitívfüggvénye f-nek, ezért

\int\limits_{|z|=1}\frac{1}{z^2}\mathrm{d}z=0

hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.

Személyes eszközök