Matematika A3a 2009/8. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Egész kitevőjű hatványsor)
(Egész kitevőjű hatványsor)
43. sor: 43. sor:
 
:<math>1=2c_{-1} \,</math>, <math>c_{-1}=\frac{1}{2}</math>
 
:<math>1=2c_{-1} \,</math>, <math>c_{-1}=\frac{1}{2}</math>
 
:<math>\oint\limits_{|z|=1}\frac{1}{\sin 2z}\,\mathrm{d}z=\pi i</math>
 
:<math>\oint\limits_{|z|=1}\frac{1}{\sin 2z}\,\mathrm{d}z=\pi i</math>
 +
 +
'''Példa.''' Adjuk meg az
 +
:<math>f(z)=\frac{z^2}{z+2i}\,</math>
 +
függvény azon  0 körüli Laurent-sorát, mely előállítja az 1-et! Azt is adjuk meg, mely a -3-t állítja elő!
 +
 +
''Megoldás.'' -2i szinguláris hely. Ha a=0, akkor a z=1-et a 0 körüli Taylor-sor állítja elő, mert |0-1| < |0 - (-2i)|. Persze ezt is a m.s-ral adjuk meg:
 +
:<math>f(z)=\frac{z^2}{z+2i}=z^2\frac{1}{2i}\frac{1}{\frac{z}{2i}+1}=\frac{z^2}{2i}\frac{1}{1-\frac{iz}{2}}=\sum\limits_{n=0}^{\infty}\frac{i^{n-1}}{2^{n+1}}z^{n+2}=\sum\limits_{n=2}^{\infty}\frac{i^{n-3}}{2^{n-1}}z^n</math>

A lap 2009. november 11., 19:15-kori változata

Egész kitevőjű hatványsor

1. Feladat Igazoljuk, hogy ha ∑-∞cn(zz0)n hatványsornak a z0-ban izolált szingularitása van, máshol reguláris, akkor

\oint\limits_{G}\sum\limits_{n=-\infty}^{+\infty}c_n(z-z_0)^n\,\mathrm{d}z=2\pi i c_{-1}

Mo. Ugyanis,

\oint\limits_{G}\sum\limits_{n=-\infty}^{+\infty}c_n(z-z_0)^n\,\mathrm{d}z=\sum\limits_{n=-\infty}^{+\infty}\oint\limits_{G}c_n(z-z_0)^n\,\mathrm{d}z=
=\oint\limits_{G}c_{-1}(z-z_0)^{-1}\,\mathrm{d}z=2\pi i c_{-1}

mert a primitív függvénnyel rendelkező tagok integráljai nullák.

2. Feladat. (Riemann-tétel) Igazoljuk, hogy ha f korlátos, z0-ban szingularis és máshol reguláris, akkor a körintegrálja eltűnik.

Mo. Belátjuk, az f Laurent-sorának főrésze eltűnik. Az Laurent-sor együtthatóformuláiból, k < 0 egészre és Kr egy 0 < r < 1 sugarú körre:

|c_{-k}|=\left|\frac{1}{2\pi i}\oint\limits_{K_r}f(z)(z-z_0)^{k-1}\mathrm{d}z\right|\leq\frac{1}{2\pi}\oint\limits_{K_r}|f(z)||z-z_0|^{k-1}\mathrm{d}r=
=\frac{1}{2\pi}K \cdot 2\pi r\to 0

ahol K az f korlátja. Itt felhasználtuk, hogy xk − 1 < 1, ha 0 < x < 1. Ha pedig r-rel tartunk a 0-hoz, az együttható eltűnik.

f-tehát kiterjeszthető U-n reguláris függvénnyé, így a Cauchy-tétel miatt minden körintegrálja eltűnik. Vagy egyszerűbben: f reziduuma a megszüntethető szingularitási helyen 0.

3. Feladat

\oint\limits_{|z|=1}\frac{z^2}{1-\cos z}\,\mathrm{d}z=?

Mo. Megnézzük az értelmezési tartományt!

1-\cos z=0\,, \cos z=1\,,
\frac{e^{iz}+e^{-iz}}{2}=1
e^{2iz}-2e^{iz}+1=0\,
(e^{iz}-1)^2=0\,
e^{iz}=1\,
iz=k2\pi i\,, z=2\pi k\,

Tehát a kör lapon értelmes kivéve a 0-t, ahol viszont korlátos egy környezetben:

\lim\limits_{z\to 0}\frac{1-\cos z}{z^2}=\frac{1}{2}

A maradék kompakton folytonos, így korlátos, tehát az előző tétel értelmében a körintegrálja eltűnik.

4. Feladat.

\oint\limits_{|z|=1}\frac{1}{\sin 2z}\,\mathrm{d}z=?

Mo. Tudjuk,

\lim\limits_{z\to 0}\frac{\sin 2z}{z}=2

emiatt zf(z) már reguláris, ezért a Laurent-sorában a főrészben egyedül a c-1-hez tartozó tag van.

\frac{1}{\sin 2z}=c_{-1}\frac{1}{z}+c_0+c_1z+...\,
\frac{1}{2z-\frac{1}{6}(2z)^3+...}=c_{-1}\frac{1}{z}+c_0+c_1z+...\,
1=(2z-\frac{1}{6}(2z)^3+...)(c_{-1}\frac{1}{z}+c_0+c_1z+...)\,
1=2c_{-1} \,, c_{-1}=\frac{1}{2}
\oint\limits_{|z|=1}\frac{1}{\sin 2z}\,\mathrm{d}z=\pi i

Példa. Adjuk meg az

f(z)=\frac{z^2}{z+2i}\,

függvény azon 0 körüli Laurent-sorát, mely előállítja az 1-et! Azt is adjuk meg, mely a -3-t állítja elő!

Megoldás. -2i szinguláris hely. Ha a=0, akkor a z=1-et a 0 körüli Taylor-sor állítja elő, mert |0-1| < |0 - (-2i)|. Persze ezt is a m.s-ral adjuk meg:

f(z)=\frac{z^2}{z+2i}=z^2\frac{1}{2i}\frac{1}{\frac{z}{2i}+1}=\frac{z^2}{2i}\frac{1}{1-\frac{iz}{2}}=\sum\limits_{n=0}^{\infty}\frac{i^{n-1}}{2^{n+1}}z^{n+2}=\sum\limits_{n=2}^{\infty}\frac{i^{n-3}}{2^{n-1}}z^n
Személyes eszközök