Matematika A3a 2009/8. gyakorlat

A MathWikiből
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2009. november 6., 12:08-kor történt szerkesztése után volt.
(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)

Egész kitevőjű hatványsor

7. Feladat Igazoljuk, hogy ha ∑-∞cn(zz0)n hatványsornak a z0-ban izolált szingularitása van, máshol reguláris, akkor

\oint\limits_{G}\sum\limits_{n=-\infty}^{+\infty}c_n(z-z_0)^n\,\mathrm{d}z=2\pi i c_{-1}

Mo. Ugyanis,

\oint\limits_{G}\sum\limits_{n=-\infty}^{+\infty}c_n(z-z_0)^n\,\mathrm{d}z=\sum\limits_{n=-\infty}^{+\infty}\oint\limits_{G}c_n(z-z_0)^n\,\mathrm{d}z=
=\oint\limits_{G}c_{-1}(z-z_0)^{-1}\,\mathrm{d}z=2\pi i c_{-1}

mert a primitív függvénnyel rendelkező tagok integráljai nullák.

8. Feladat. (Riemann-tétel) Igazoljuk, hogy ha f korlátos, z0-ban szingularis és máshol reguláris, akkor a körintegrálja eltűnik.

Mo. Belátjuk, az f Laurent-sorának főrésze eltűnik. Az Laurent-sor együtthatóformuláiból, k < 0 egészre és Kr egy 0 < r < 1 sugarú körre:

|c_{-k}|=\left|\frac{1}{2\pi i}\oint\limits_{K_r}f(z)(z-z_0)^{k-1}\mathrm{d}z\right|\leq\frac{1}{2\pi}\oint\limits_{K_r}|f(z)||z-z_0|^{k-1}\mathrm{d}r=
=\frac{1}{2\pi}K \cdot 2\pi r\to 0

ahol K az f korlátja. Itt felhasználtuk, hogy xk − 1 < 1, ha 0 < x < 1. Ha pedig r-rel tartunk a 0-hoz, az együttható eltűnik.

f-tehát kiterjeszthető U-n reguláris függvénnyé, így a Cauchy-tétel miatt minden körintegrálja eltűnik. Vagy egyszerűbben: f reziduuma a megszüntethető szingularitási helyen 0.

9. Feladat

\oint\limits_{|z|=1}\frac{z^2}{1-\cos z}\,\mathrm{d}z=?

Mo. Megnézzük az értelmezési tartományt!

1-\cos z=0\,, \cos z=1\,,
\frac{e^{iz}+e^{-iz}}{2}=1
e^{2iz}-2e^{iz}+1=0\,
(e^{iz}-1)^2=0\,
e^{iz}=1\,
iz=k2\pi i\,, z=2\pi k\,

Tehát a kör lapon értelmes kivéve a 0-t, ahol viszont korlátos egy környezetben:

\lim\limits_{z\to 0}\frac{1-\cos z}{z^2}=\frac{1}{2}

A maradék kompakton folytonos, így korlátos, tehát az előző tétel értelmében a körintegrálja eltűnik.

10. Feladat.

\oint\limits_{|z|=1}\frac{1}{\sin 2z}\,\mathrm{d}z=?

Mo.

\oint\limits_{|z|=1}\frac{1}{\sin (2z)}\,\mathrm{d}z=?

Tudjuk,

\lim\limits_{z\to 0}\frac{\sin 2z}{z}=2

emiatt zf(z) már reguláris, ezért a Laurent-sorában a főrészben egyedül a c-1-hez tartozó tag van.

\frac{1}{\sin 2z}=c_{-1}\frac{1}{z}+c_0+c_1z+...\,
\frac{1}{2z-\frac{1}{6}(2z)^3+...}=c_{-1}\frac{1}{z}+c_0+c_1z+...\,
1=(2z-\frac{1}{6}(2z)^3+...)(c_{-1}\frac{1}{z}+c_0+c_1z+...)\,
1=2c_{-1} \,, c_{-1}=\frac{1}{2}
\oint\limits_{|z|=1}\frac{1}{\sin 2z}\,\mathrm{d}z=\pi i
Személyes eszközök