Matematika A3a 2009/egzakt

A MathWikiből
(Változatok közti eltérés)
(Egzisztencia- és unicitástétel)
a (Definíció)
 
(egy szerkesztő 20 közbeeső változata nincs mutatva)
21. sor: 21. sor:
 
:<math>\frac{\partial\Phi}{\partial y}\ne 0</math>
 
:<math>\frac{\partial\Phi}{\partial y}\ne 0</math>
 
ezért az implicitfüggvény-tétel miatt, hogy y-t "ki lehet fejezni". Érdemes felelevenítenünk magát az implicitfüggvény-tételt:
 
ezért az implicitfüggvény-tétel miatt, hogy y-t "ki lehet fejezni". Érdemes felelevenítenünk magát az implicitfüggvény-tételt:
 +
 
'''Implicitfüggvény-tétel''' -- Ha a &Phi;: <math>I</math>&times;<math>J</math> <math>\to</math> '''R''' folytonosan differenciálható függvény az <math>(x_0,y_0)</math> &isin;  int(<math>I</math>&times;<math>J</math>) pontban teljesíti a &part;&Phi;/&part;y &ne; 0 feltételt és &Phi;(<math>x_0,y_0</math>)=0, akkor a &Phi;(x,y)=0 egyenletnek van az <math>(x_0,y_0)</math> ponton áthaladó implicit függvénye és ennek deriváltja:
 
'''Implicitfüggvény-tétel''' -- Ha a &Phi;: <math>I</math>&times;<math>J</math> <math>\to</math> '''R''' folytonosan differenciálható függvény az <math>(x_0,y_0)</math> &isin;  int(<math>I</math>&times;<math>J</math>) pontban teljesíti a &part;&Phi;/&part;y &ne; 0 feltételt és &Phi;(<math>x_0,y_0</math>)=0, akkor a &Phi;(x,y)=0 egyenletnek van az <math>(x_0,y_0)</math> ponton áthaladó implicit függvénye és ennek deriváltja:
 
:<math>y'(x)=-\left.\frac{\;\frac{\partial\Phi}{\partial x}\;}{\frac{\partial \Phi}{\partial{y}}}\right|_{(x,y(x))}</math>
 
:<math>y'(x)=-\left.\frac{\;\frac{\partial\Phi}{\partial x}\;}{\frac{\partial \Phi}{\partial{y}}}\right|_{(x,y(x))}</math>
  
 
==Egzisztencia- és unicitástétel==
 
==Egzisztencia- és unicitástétel==
'''Tétel.''' Legyenek ''P'' és ''Q'' az ''U'' &sube; '''R'''<sup>2</sup> nyílt halmazon értelmezett folytonos valós függvények, ''Q'' sehol se nulla, grad F = (P,Q) valamely F:''U'' <math>\to</math> '''R''' folytonosan differenciálható függvénnyel és <math>(x_0,y_0)</math> &isin; ''U''. Ekkor  
+
'''Tétel.''' Legyenek ''P'' és ''Q'' az ''U'' &sube; '''R'''<sup>2</sup> nyílt halmazon értelmezett folytonos valós függvények, ''Q'' sehol se nulla, grad F = (P,Q) valamely F: ''U'' <math>\to</math> '''R''' folytonosan differenciálható függvénnyel és <math>(x_0,y_0)</math> &isin; ''U''. Ekkor  
# az y'=-P/Q egyenletnek van az <math>y_0=y(x_0)</math> kezdeti feltételt kielégítő egyértelmű ''y'' megoldása és  
+
 
# az F(x,y) = F(<math>x_0,y_0</math>) egyenlet <math>(x_0,y_0)</math>-on áthaladó egyetlen implicit függvénye az y'=-P/Q  egyenlet <math>y(x_0)=y_0</math> kezdeti feltételt kielégítő egyetlen megoldása.
+
1) az  
 +
:(ex) y'=-P/Q  
 +
egyenletnek egyértelműen létezik az <math>y_0=y(x_0)</math> kezdeti feltételt kielégítő ''y'' megoldása és  
 +
 
 +
2) az  
 +
:(impl) F(x,y) = F(<math>x_0,y_0</math>)  
 +
egyenlet <math>(x_0,y_0)</math>-on áthaladó egyetlen implicit függvénye az (ex) egyenlet <math>y(x_0)=y_0</math> kezdeti feltételt kielégítő egyetlen megoldása.
  
''Biz.'' 1) ''Egzisztencia.''
+
''Biz.'' 1) ''Egzisztencia.'' Belátjuk, hogy (impl) egyetlen <math>(x_0,y_0)</math>-on áthaladó implicit függvénye megoldása az (ex)
:<math>Q(x_0,y_0)=\left.\frac{\partial F}{\partial y}\right|_{(x_0,y_0)}\ne 0</math>
+
egyenletnek.
így az implicitfüggvény-tétel szerint, egyértelműen létezik F-nek y=y(x) implicit függvénye az adott pont egy környezetében és ennek deriváltja:
+
:<math>\left.\frac{\partial F}{\partial y}\right|_{(x_0,y_0)}=Q(x_0,y_0)\ne 0</math>
 +
így az implicitfüggvény-tétel szerint, egyértelműen létezik F-nek y=y(x) implicit függvénye az adott pont egy környezetében és ennek deriváltja az értelmezési tartományának minden pontjában:
 
:<math>y'(x)=-\frac{\;\cfrac{\partial F}{\partial x}(x,y(x))\;}{\cfrac{\partial F}{\partial y}(x,y(x))}=-\frac{P(x,y(x))}{Q(x,y(x))}</math>
 
:<math>y'(x)=-\frac{\;\cfrac{\partial F}{\partial x}(x,y(x))\;}{\cfrac{\partial F}{\partial y}(x,y(x))}=-\frac{P(x,y(x))}{Q(x,y(x))}</math>
Tehát létezik megoldása, mert y egy megoldása az egyenletnek.  
+
tehát ''y'' az (ex) differenciálegyenletnek is megoldása, és ez kielégíti a kezdeti feltételt.  
  
''Unicitás.'' Ha létezik megoldása az egyenletnek, akkor a  
+
''Unicitás.'' Tegyük fel, hogy létezik megoldása a kezdeti érték feladatnak. Legyen egy tetszőleges megoldása ''y'', azaz
 
:<math>y'(x)=-\frac{P(x,y(x))}{Q(x,y(x))}</math>
 
:<math>y'(x)=-\frac{P(x,y(x))}{Q(x,y(x))}</math>
egyenlet a grad F = (P,Q) miatt
+
Ez az egyenlet a grad F = (P,Q) miatt előáll
:<math>\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'=0\,</math>
+
:<math>\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'=0</math>
de mivel az összetett függvény differenciálása miatt (d(F<math>\circ</math>G)(u)=dF(G(u))<math>\circ</math> dG(u))
+
alakban. Most belátjuk, hogy ''y'' (impl)-nek implicit megoldása. Az összetett függvény differenciálási szabálya miatt ( d(F<math>\circ</math>G)(x,y)=dF(G(x,y))<math>\circ</math> dG(x,y) ) az előző egyenlet a következő formában is írható:
:<math>(F(x,y(x)))'=[\mathrm{grad}\,F|_{(x,y(x))}]\cdot\begin{bmatrix}x'\\y'(x)\end{bmatrix}=\frac{\partial F}{\partial x}|_{(x,y(x))}+y'\frac{\partial F}{\partial y}|_{(x,y(x))}\,</math>
+
:<math>(F(x,y(x)))'=[\mathrm{grad}\,F|_{(x,y(x))}]\cdot\begin{bmatrix}x'\\y'(x)\end{bmatrix}=\frac{\partial F}{\partial x}|_{(x,y(x))}+y'\frac{\partial F}{\partial y}|_{(x,y(x))}\equiv 0\,</math>
ezért az integrálszámítás alaptétele miatt F(x,y(x)) egy konstans függvény, azaz y(x) implicit függvénye az F(x,y)=F(<math>x_0,y_0</math>) egyenletnek. Ez az utóbbi egyértelmű, ezért a megoldás is az.
+
''x'' értékei egy intervallumból kerülnek ki, ezért az ''integrálszámítás alaptétele'' szerint az x <math>\mapsto</math> F(x,y(x)) egy konstans függvény. De a feltétel szerint <math>y(x_0)=y_0</math> teljesül, ezért x <math>\mapsto</math> y(x) egy <math>(x_0,y_0)</math>-on áthaladó implicit függvénye az F(x,y)=F(<math>x_0,y_0</math>) egyenletnek. Ez az utóbbi azonban egyértelműen van meghatározva, ezért a kezdeti érték feladat minden megoldása egybeesik ezzel az implicit függvénnyel, azaz a megoldás egyértelmű.
  
2)
+
2) Az implicitfüggvény tételében adott egyetlen implicit függvény az 1) egzisztencia része miatt megoldása (ex)-nek és 1) unicitás része miatt ez az egyetlen megoldása (ex)-nek.
  
 
==Az egzaktság jellemzése==
 
==Az egzaktság jellemzése==
50. sor: 58. sor:
 
alakban is szokás írni.  
 
alakban is szokás írni.  
  
Ez utóbbi egyenletetről azt is mondják, hogy akkor egzakt, ha a ''P''(''x'',''y'')d''x'' + ''Q''(''x'',''y'')d''y'' kifejezés teljes differenciál, azaz létezik olyan F(x,y) függvény, melynek teljes differenciálja:
+
Ez utóbbi egyenletről azt is mondják, hogy akkor egzakt, ha a ''P''(''x'',''y'')d''x'' + ''Q''(''x'',''y'')d''y'' kifejezés "teljes differenciál", amin azt értik, hogy létezik olyan F(x,y) függvény, melynek teljes differenciálja:
 
:<math>\mathrm{d}F(x,y)=P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y\,</math>
 
:<math>\mathrm{d}F(x,y)=P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y\,</math>
  
Ezt mai jelölésekkel a következőképpen értelmezhetjük. Egy F kétváltozós függvény teljes differenciálja egy lineáris leképezés, mely a sztenderd {(1,0),(0,1)} bázisban felírt koordinátáival nem más, mit a parciális deriváltjainak sormátrixa:
+
Ezt a mai jelölésekkel a következőképpen írjuk. Egy F kétváltozós függvény teljes differenciálja egy lineáris leképezés, mely a sztenderd {(1,0),(0,1)} bázisban felírt koordinátáival nem más, mit a parciális deriváltjainak sormátrixa:
 
:<math>[\mathrm{d}F(x,y)]=\mathrm{grad}\,F(x,y)=\left[\;\frac{\partial F}{\partial x}\;,\;\frac{\partial F}{\partial y}\;\right]</math>
 
:<math>[\mathrm{d}F(x,y)]=\mathrm{grad}\,F(x,y)=\left[\;\frac{\partial F}{\partial x}\;,\;\frac{\partial F}{\partial y}\;\right]</math>
 
Emiatt a (C) feltétel a következő alakban is írható:
 
Emiatt a (C) feltétel a következő alakban is írható:
 
:<math>[\mathrm{d}F]=\left[P,Q\right]\,</math> ill. <math>\mathrm{grad}\,F=[P,Q]\,</math>
 
:<math>[\mathrm{d}F]=\left[P,Q\right]\,</math> ill. <math>\mathrm{grad}\,F=[P,Q]\,</math>
  
Tehát az egzakt egyenletben a (P,Q) függvény '''potenciálos'''. Ebből hasznos jellemzést kapunk a vektoranalízisbeli ismereteinkből.
+
Tehát az egzakt egyenletben a (P,Q) vektormező (vektorértékű függvény) '''potenciálos'''. Innen hasznos jellemzést kapunk az egzaktságra a vektoranalízisbeli ismereteinkből.
  
  
'''Tétel.''' Legyen ''U'' egyszeresen összefüggő nyílt halmaz, ''P'',''Q'': ''U'' <math>\to</math> '''R''' folytonosan differenciálható függvények. A Pdx + Qdy = 0 egyenlet pontosan akkor egzakt, ha   
+
'''Tétel.''' Legyen ''U'' egyszeresen összefüggő nyílt halmaz, ''P'',''Q'': ''U'' <math>\to</math> '''R''' folytonosan differenciálható függvények (Q sehol sem nulla). A Pdx + Qdy = 0 egyenlet pontosan akkor egzakt, ha   
:<math>\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}</math>
+
:<math>\frac{\partial P}{\partial y}\equiv\frac{\partial Q}{\partial x}</math>
  
Az F függvényt, az Pdx + Qdy = 0 egyenlet első integráljának nevezzük.
+
Az F függvényt, az Pdx + Qdy = 0 egyenlet integráljának nevezzük.
  
Ezt a tételt jól ismerjük és a bizonyítását a vektoranalízisben vettük. Sokkal fontosabb azonban, hogy igazoljuk az egyenlet megoldhatóságát ebben az esetben.
+
Ezt a tételt jól ismerjük és a bizonyítását a vektoranalízisben vettük.  
  
'''Megjegyzés.''' Bár a szeparábilis egyenlet egzakt, de a fenti feltétel az egzaktság ellenőrzésére sokkal szigorúbb mint a szeparábilis megoldásának egzisztenciafeltétele.
+
'''Megjegyzés.''' 1) A feltétel nem más, mint az, hogy a (P,Q) síkbeli vektormező rotációja azonosan nulla. Ugyanis a rotáció a síkbeli (P,Q) vektormező esetén:
 +
:<math>\mathrm{rot}\,(P,Q)=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}</math>
 +
2) Bár a szeparábilis egyenlet egzakt, a fenti feltétel az egzaktság ellenőrzésére sokkal szigorúbb mint a szeparábilis egyenlet megoldhatóságának feltétele.
  
 
==Példa==
 
==Példa==
94. sor: 104. sor:
 
:<math>e^{xy}+\sin x+\mathrm{sh}\, y=C</math>
 
:<math>e^{xy}+\sin x+\mathrm{sh}\, y=C</math>
 
==Integráló tényező==
 
==Integráló tényező==
Általában egy P(x,y)dx+Q(x,y)dy=0 alakú differenciálegyenlet esetén nem teljesül a rot(P,G)=0 feltétel. Esetenként azonban található olyan &mu; kétváltozós pozitív értékű függvény, amellyel:
+
Általában egy P(x,y)dx+Q(x,y)dy=0 alakú differenciálegyenlet esetén nem teljesül a rot(P,Q)=0 feltétel. Esetenként azonban található olyan &mu; kétváltozós pozitív értékű függvény, amellyel:
 
:<math>\mu(x,y) P(x,y)+y'\mu(x,y) Q(x,y)=0\,</math>
 
:<math>\mu(x,y) P(x,y)+y'\mu(x,y) Q(x,y)=0\,</math>
 
már egzakt egyenlet. Vizsáljuk meg miből nyerhetjük az ilyen &mu; un. '''integráló szorzót'''! A rot(&mu;P,&mu;Q)=0 feltétel a következő:
 
már egzakt egyenlet. Vizsáljuk meg miből nyerhetjük az ilyen &mu; un. '''integráló szorzót'''! A rot(&mu;P,&mu;Q)=0 feltétel a következő:
106. sor: 116. sor:
 
közönséges elsőrendű inhomogén lineáris differenciálegyenlethez!
 
közönséges elsőrendű inhomogén lineáris differenciálegyenlethez!
  
Világos, hogy nem egzakt, mert az
+
Világos, hogy nem egzakt, mert a
 
:<math>\mathrm{d}y-(g(x)-f(x)y)\,\mathrm{d}x=0</math>  
 
:<math>\mathrm{d}y-(g(x)-f(x)y)\,\mathrm{d}x=0</math>  
alakban az keresztben vett deriváltak: 0 és f(x).
+
alakban a keresztben vett deriváltak: 0 és f(x).
  
 
Q=1 és P(x,y)=-g(x)+f(x)y ezért a &mu;-t adó parc.diff. egyenlet:
 
Q=1 és P(x,y)=-g(x)+f(x)y ezért a &mu;-t adó parc.diff. egyenlet:
134. sor: 144. sor:
  
 
==Példa==
 
==Példa==
Tanulságképpen levonhatjuk, hogy néha érdemes a &mu;-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ha ugyanis csak a &mu;=&mu;(x) alakú integráló szorzókra szorítkozunk, akkor a megoldandó egyenlet:
+
Tanulságképpen megállapíthatjuk, hogy néha érdemes a &mu;-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ha ugyanis csak a &mu;=&mu;(x) alakú integráló szorzókra szorítkozunk, akkor a megoldandó egyenlet:
 
:<math>\mu\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}\,</math>
 
:<math>\mu\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}\,</math>
 
azaz  
 
azaz  
 
:<math>\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{1}{\mu}\frac{\partial \mu}{\partial x}\,</math>
 
:<math>\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{1}{\mu}\frac{\partial \mu}{\partial x}\,</math>
 
:<math>R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \mathrm{ln}\,\mu}{\partial x}\quad\quad\mu(x)=e^{\int R(x)\mathrm{dx}}</math>
 
:<math>R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \mathrm{ln}\,\mu}{\partial x}\quad\quad\mu(x)=e^{\int R(x)\mathrm{dx}}</math>
Az ilyen alak feltétele tehát az, hogy az
+
Az ilyen alak feltétele tehát az, hogy a
 
:<math>\frac{-\mathrm{rot}\,(P,Q)}{Q}</math>
 
:<math>\frac{-\mathrm{rot}\,(P,Q)}{Q}</math>
 
csak x-től függjön (vagy a -rot(P,Q)/P csak y-tól és akkor &mu; csak y-tól függ).
 
csak x-től függjön (vagy a -rot(P,Q)/P csak y-tól és akkor &mu; csak y-tól függ).

A lap jelenlegi, 2013. szeptember 8., 09:09-kori változata

V2 716, nov. 24. kedd 10:15 - 11:45

Tartalomjegyzék

Definíció

Legyen U ⊆ R2 nyílt halmaz és P,Q: U \to R folytonos függvények, Q sehol sem nulla. Azt mondjuk, hogy az

y'=-\frac{P(x,y)}{Q(x,y)}\quad\quad \mathrm{(EX)}

differenciálegyenlet egzakt, ha létezik olyan F: U \to R folytonosan differenciálható függvény, hogy

\frac{\partial F}{\partial x}=P,\quad\quad\frac{\partial F}{\partial y}=Q\quad\quad\mathrm{(C)}

Példa. Minden

y'=\frac{f(x)}{g(y)}\quad\quad (f\in\mathrm{C}(I),\;g\in \mathrm{C}(J),\;0\notin\mathrm{Ran}(g))

alakú szeparábilis differenciálegyenlet egzakt, hiszen ha g integrálfüggvénye G, akkor

g(y)y'=f(x)\quad\quad\Rightarrow\quad\quad G(y)=F(x)+C

Alkalmas tehát az alábbi függvény:

\Phi(x,y):=G(y)-F(x)=C\quad\quad\Rightarrow\quad\quad\frac{\partial \Phi}{\partial x}=f,\quad\quad\frac{\partial \Phi}{\partial y}=g

Jelen esetben a G függvény deriváltja (G'=g) sehol sem nulla folytonos függvény, ezért szigorúan monoton. Emiatt kifejezhető y éspedig:

y(x)=G^{-1}(F(x)+C)\,

Megjegyzés. A megoldásokat implicit módon adja meg az

\Phi(x,y)=C\,

egyenlet. Mivel

\frac{\partial\Phi}{\partial y}\ne 0

ezért az implicitfüggvény-tétel miatt, hogy y-t "ki lehet fejezni". Érdemes felelevenítenünk magát az implicitfüggvény-tételt:

Implicitfüggvény-tétel -- Ha a Φ: I×J \to R folytonosan differenciálható függvény az (x0,y0) ∈ int(I×J) pontban teljesíti a ∂Φ/∂y ≠ 0 feltételt és Φ(x0,y0)=0, akkor a Φ(x,y)=0 egyenletnek van az (x0,y0) ponton áthaladó implicit függvénye és ennek deriváltja:

y'(x)=-\left.\frac{\;\frac{\partial\Phi}{\partial x}\;}{\frac{\partial \Phi}{\partial{y}}}\right|_{(x,y(x))}

Egzisztencia- és unicitástétel

Tétel. Legyenek P és Q az UR2 nyílt halmazon értelmezett folytonos valós függvények, Q sehol se nulla, grad F = (P,Q) valamely F: U \to R folytonosan differenciálható függvénnyel és (x0,y0)U. Ekkor

1) az

(ex) y'=-P/Q

egyenletnek egyértelműen létezik az y0 = y(x0) kezdeti feltételt kielégítő y megoldása és

2) az

(impl) F(x,y) = F(x0,y0)

egyenlet (x0,y0)-on áthaladó egyetlen implicit függvénye az (ex) egyenlet y(x0) = y0 kezdeti feltételt kielégítő egyetlen megoldása.

Biz. 1) Egzisztencia. Belátjuk, hogy (impl) egyetlen (x0,y0)-on áthaladó implicit függvénye megoldása az (ex) egyenletnek.

\left.\frac{\partial F}{\partial y}\right|_{(x_0,y_0)}=Q(x_0,y_0)\ne 0

így az implicitfüggvény-tétel szerint, egyértelműen létezik F-nek y=y(x) implicit függvénye az adott pont egy környezetében és ennek deriváltja az értelmezési tartományának minden pontjában:

y'(x)=-\frac{\;\cfrac{\partial F}{\partial x}(x,y(x))\;}{\cfrac{\partial F}{\partial y}(x,y(x))}=-\frac{P(x,y(x))}{Q(x,y(x))}

tehát y az (ex) differenciálegyenletnek is megoldása, és ez kielégíti a kezdeti feltételt.

Unicitás. Tegyük fel, hogy létezik megoldása a kezdeti érték feladatnak. Legyen egy tetszőleges megoldása y, azaz

y'(x)=-\frac{P(x,y(x))}{Q(x,y(x))}

Ez az egyenlet a grad F = (P,Q) miatt előáll

\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'=0

alakban. Most belátjuk, hogy y (impl)-nek implicit megoldása. Az összetett függvény differenciálási szabálya miatt ( d(F\circG)(x,y)=dF(G(x,y))\circ dG(x,y) ) az előző egyenlet a következő formában is írható:

(F(x,y(x)))'=[\mathrm{grad}\,F|_{(x,y(x))}]\cdot\begin{bmatrix}x'\\y'(x)\end{bmatrix}=\frac{\partial F}{\partial x}|_{(x,y(x))}+y'\frac{\partial F}{\partial y}|_{(x,y(x))}\equiv 0\,

x értékei egy intervallumból kerülnek ki, ezért az integrálszámítás alaptétele szerint az x \mapsto F(x,y(x)) egy konstans függvény. De a feltétel szerint y(x0) = y0 teljesül, ezért x \mapsto y(x) egy (x0,y0)-on áthaladó implicit függvénye az F(x,y)=F(x0,y0) egyenletnek. Ez az utóbbi azonban egyértelműen van meghatározva, ezért a kezdeti érték feladat minden megoldása egybeesik ezzel az implicit függvénnyel, azaz a megoldás egyértelmű.

2) Az implicitfüggvény tételében adott egyetlen implicit függvény az 1) egzisztencia része miatt megoldása (ex)-nek és 1) unicitás része miatt ez az egyetlen megoldása (ex)-nek.

Az egzaktság jellemzése

Megjegyzés. Az egzakt differenciálegyenletet még

P(x,y)+Q(x,y)y'=0\, ill. P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y=0\,

alakban is szokás írni.

Ez utóbbi egyenletről azt is mondják, hogy akkor egzakt, ha a P(x,y)dx + Q(x,y)dy kifejezés "teljes differenciál", amin azt értik, hogy létezik olyan F(x,y) függvény, melynek teljes differenciálja:

\mathrm{d}F(x,y)=P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y\,

Ezt a mai jelölésekkel a következőképpen írjuk. Egy F kétváltozós függvény teljes differenciálja egy lineáris leképezés, mely a sztenderd {(1,0),(0,1)} bázisban felírt koordinátáival nem más, mit a parciális deriváltjainak sormátrixa:

[\mathrm{d}F(x,y)]=\mathrm{grad}\,F(x,y)=\left[\;\frac{\partial F}{\partial x}\;,\;\frac{\partial F}{\partial y}\;\right]

Emiatt a (C) feltétel a következő alakban is írható:

[\mathrm{d}F]=\left[P,Q\right]\, ill. \mathrm{grad}\,F=[P,Q]\,

Tehát az egzakt egyenletben a (P,Q) vektormező (vektorértékű függvény) potenciálos. Innen hasznos jellemzést kapunk az egzaktságra a vektoranalízisbeli ismereteinkből.


Tétel. Legyen U egyszeresen összefüggő nyílt halmaz, P,Q: U \to R folytonosan differenciálható függvények (Q sehol sem nulla). A Pdx + Qdy = 0 egyenlet pontosan akkor egzakt, ha

\frac{\partial P}{\partial y}\equiv\frac{\partial Q}{\partial x}

Az F függvényt, az Pdx + Qdy = 0 egyenlet integráljának nevezzük.

Ezt a tételt jól ismerjük és a bizonyítását a vektoranalízisben vettük.

Megjegyzés. 1) A feltétel nem más, mint az, hogy a (P,Q) síkbeli vektormező rotációja azonosan nulla. Ugyanis a rotáció a síkbeli (P,Q) vektormező esetén:

\mathrm{rot}\,(P,Q)=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}

2) Bár a szeparábilis egyenlet egzakt, a fenti feltétel az egzaktság ellenőrzésére sokkal szigorúbb mint a szeparábilis egyenlet megoldhatóságának feltétele.

Példa

Oldjuk meg az

(ye^{xy}+\cos x)\,\mathrm{d}x+(xe^{xy}+\mathrm{ch}\, y)\,\mathrm{d}y=0

differenciálegyenletet!

Mo.

\frac{\partial P}{\partial y}(x,y)=e^{xy}+xye^{xy},\quad\quad \frac{\partial Q}{\partial x}(x,y)=e^{xy}+xye^{xy}

Tehát egzakt. Az egyenlet első integrálját megkapjuk, ha megoldjuk az

\frac{\partial F}{\partial x}(x,y)=ye^{xy}+\cos x,\quad\quad \frac{\partial F}{\partial y}(x,y)=xe^{xy}+\mathrm{ch}\, y

parciális differenciálegyenlet-rendszert.

Az első egyenletből:

F(x,y)=e^{xy}+\sin x+C(y)\,

A második egyenlet miatt:

xe^{xy}+C'(y)=xe^{xy}+\mathrm{ch}\, y

azaz

C'(y)=\mathrm{ch}\, y

Innen a C(y)-ra egy partikuláris megoldás:

C(y)=\mathrm{sh}\, y

Azaz

F(x,y)=e^{xy}+\sin x+\mathrm{sh}\, y

Ez valóban teljesíti a grad F = [P,Q] feltételt, így az első integrál:

e^{xy}+\sin x+\mathrm{sh}\, y=C

Integráló tényező

Általában egy P(x,y)dx+Q(x,y)dy=0 alakú differenciálegyenlet esetén nem teljesül a rot(P,Q)=0 feltétel. Esetenként azonban található olyan μ kétváltozós pozitív értékű függvény, amellyel:

\mu(x,y) P(x,y)+y'\mu(x,y) Q(x,y)=0\,

már egzakt egyenlet. Vizsáljuk meg miből nyerhetjük az ilyen μ un. integráló szorzót! A rot(μP,μQ)=0 feltétel a következő:

\frac{\partial\mu P}{\partial y}=\frac{\partial\mu Q}{\partial x}\,
\mu\frac{\partial P}{\partial y}+P\frac{\partial\mu }{\partial y}=\mu\frac{\partial Q}{\partial x}+Q\frac{\partial \mu}{\partial x}\,
\mu\cdot\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}-P\frac{\partial\mu }{\partial y}\,

Ezt a parciális differenciálegyenletet kell megoldanunk ahhoz, hogy legyen integráló tényezőnk.

Példa. Keressünk integráló tényezőt az

y'+f(x)y=g(x)\,

közönséges elsőrendű inhomogén lineáris differenciálegyenlethez!

Világos, hogy nem egzakt, mert a

\mathrm{d}y-(g(x)-f(x)y)\,\mathrm{d}x=0

alakban a keresztben vett deriváltak: 0 és f(x).

Q=1 és P(x,y)=-g(x)+f(x)y ezért a μ-t adó parc.diff. egyenlet:

\mu f=\frac{\partial \mu}{\partial x}-(g(x)-f(x)y)\frac{\partial\mu }{\partial y}\,

Elegendő egy partikuláris megoldást találni, amit egyszerűen megkapunk, ha csak az olyan μ-ket keressük, amik csak az x-től függenek, ekkor ugyanis pl. g(x) nem is lesz az egyenletben. Ilyet találunk, mert:

\mu f=\frac{\partial \mu}{\partial x}\,
\mu f(x)=\mu'\,

Ez egy szeparábilis, aminek a megoldása:

f(x)=\frac{\mu'}{\mu}\,
f(x)=(\mathrm{ln}\,\mu)'\,

egy partikuláris megoldás:

\mu(x)=e^{F(x)}\,

ahol F'=f.

HF: Keressük meg ezzel az integáló szorzóval az általános megoldást!

Mo.

e^{F(x)}\mathrm{d}y+(-g(x)+f(x)y)e^{F(x)}\,\mathrm{d}x=0

Már egzakt, hiszen

e^{F(x)}f(x)=f(x)e^{F(x)}\,

Ekkor

\Phi(x,y)=ye^{F(x)}+C(x),\quad\quad \Phi(x,y)=ye^{F(x)}+\int -g(x)e^{F(x)}\,\mathrm{d}x+C(y)

azaz C=ye^{F(x)}-\int g(x)e^{F(x)}\,\mathrm{d}x

Példa

Tanulságképpen megállapíthatjuk, hogy néha érdemes a μ-re felírt egyenletnek csak olyan megoldásait keresni, amelyek csak az egyik változótól függenek. Ha ugyanis csak a μ=μ(x) alakú integráló szorzókra szorítkozunk, akkor a megoldandó egyenlet:

\mu\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=Q\frac{\partial \mu}{\partial x}\,

azaz

\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{1}{\mu}\frac{\partial \mu}{\partial x}\,
R(x)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=\frac{\partial \mathrm{ln}\,\mu}{\partial x}\quad\quad\mu(x)=e^{\int R(x)\mathrm{dx}}

Az ilyen alak feltétele tehát az, hogy a

\frac{-\mathrm{rot}\,(P,Q)}{Q}

csak x-től függjön (vagy a -rot(P,Q)/P csak y-tól és akkor μ csak y-tól függ).

Példa. Oldjuk meg az

y'=\frac{x^3+y^3}{xy^2}\,

egyenletet!

Mo. Átrendezve:

(x^3+y^3)\mathrm{d}x-xy^2\mathrm{d}y=0\,

yP=3y2, ∂xQ=-y2, azaz

\frac{-\mathrm{rot}\,(P,Q)(x,y)}{Q(x,y)}=\frac{3y^2+y^2}{-xy^2}=\frac{-4}{x}

azaz célravezet, ha μ-t μ(x) alakban keressük. Ekkor

\mu(x)=\frac{1}{x^4}

Ekkor az egyenlet:

\left(\frac{1}{x}+\frac{y^3}{x^4}\right)\mathrm{d}x-\frac{y^2}{x^3}\mathrm{d}y=0\,

egzakt, mert

\frac{3y^2}{x^4}-(-1)\frac{-3y^2}{x^4}=0\,

Integrálássa:

F(x,y)=\mathrm{ln}|x|+\frac{1}{-3}\frac{y^3}{x^3}+C(y),\quad\quad F(x,y)=-\frac{1}{3}\frac{y^3}{x^3}+C(x)\,

azaz

\mathrm{ln}|x|-\frac{1}{3}\frac{y^3}{x^3}=C
3x^3\mathrm{ln}\,c|x|=y^3
x\sqrt[3]{3\,\mathrm{ln}\,c|x|}=y(x)\,
Személyes eszközök