Matematika közlek a3 2010 1. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Numerikus sorok)
(Numerikus sorok)
26. sor: 26. sor:
 
# <math>\sum\limits_{n=1}^{\infty}\frac{1}{\mathrm{arctg}\,n}</math>
 
# <math>\sum\limits_{n=1}^{\infty}\frac{1}{\mathrm{arctg}\,n}</math>
  
''Mo.''  
+
''Mo.''
<!-- : <math>s_m-s_n=\sum\limits_{k=0}^{m-n}\frac{k+n}{2^{k+n}}\leq \frac{m}{2^n}\sum\limits_{k=0}^{m-n}\frac{1}{2^k}=</math> -->
+
 
 +
:<math>\sum\limits_{n=0}^{\infty}\frac{1}{n}</math>
 +
legyen &epsilon;=1, N tetszőleges, m=2N, n=N. Ekkor
 +
:<math>|s_m-s_n|=\sum\limits_{k=0}^{N-1}\frac{1}{N+k}\leq \sum\limits_{k=0}^{N-1}\frac{1}{N}=1</math>

A lap 2010. szeptember 6., 17:04-kori változata

Numerikus sorok

1. Számítsuk ki a következő sorok összegét (ha létezik)!

  1. \sum\limits_{n=1}^{\infty}\frac{2^n+7^n}{6^n}
  2. \sum\limits_{n=0}^{\infty}\frac{(1+i)^{2n}}{3^n}
  3. \sum\limits_{n=1}^{\infty}\frac{1}{n(n+1)}
  4. \sum\limits_{n=1}^{\infty}\frac{1}{n(n+2)}
  5. \sum\limits_{n=1}^{\infty}\frac{1}{n^2+5n+4}

Mo.

\sum\limits_{n=0}^{\infty}\frac{(1+i)^{2n}}{3^n}=\sum\limits_{n=0}^{\infty}\frac{(2i)^{n}}{3^n}=\sum\limits_{n=0}^{\infty}\left(\frac{2i}{3}\right)^n=\frac{1}{1-\frac{2i}{3}}
\sum\limits_{n=1}^{\infty}\frac{1}{n(n+1)}=\sum\limits_{n=1}^{\infty}\frac{1}{n}-\frac{1}{n+1}=\lim\limits_{n\to \infty}1-\frac{1}{n+1}=1
\sum\limits_{n=1}^{\infty}\frac{1}{n(n+2)}=\sum\limits_{n=1}^{\infty}\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)=
\frac{1}{2}\lim\limits_{n\to \infty}1-\frac{1}{n+2}=\lim\limits_{n\to \infty}\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+...\right)=\frac{3}{4}
\sum\limits_{n=1}^{\infty}\frac{1}{n^2+5n+4}=\sum\limits_{n=1}^{\infty}\frac{1}{(n+1)(n+4)}=\sum\limits_{n=1}^{\infty}\frac{1}{3}\left(\frac{1}{n+1}-\frac{1}{n+4}\right)=...

2. Cauchy-kritérium, integrálkritérium, szükséges feltétel

  1. \sum\limits_{n=1}^{\infty}(-1)^n
  2. \sum\limits_{n=0}^{\infty}\frac{1}{n}
  3. \sum\limits_{n=1}^{\infty}(-1)^n\left(1+\frac{1}{n}\right)^n
  4. \sum\limits_{n=1}^{\infty}\left((-1)^n+1\right)\frac{1}{n}
  5. \sum\limits_{n=1}^{\infty}\frac{n}{2^n}
  6. \sum\limits_{n=1}^{\infty}\frac{1}{\mathrm{arctg}\,n}

Mo.

\sum\limits_{n=0}^{\infty}\frac{1}{n}

legyen ε=1, N tetszőleges, m=2N, n=N. Ekkor

|s_m-s_n|=\sum\limits_{k=0}^{N-1}\frac{1}{N+k}\leq \sum\limits_{k=0}^{N-1}\frac{1}{N}=1
Személyes eszközök