Tartalomjegyzék

-11. Exercise

- 22. Exercise
- 2.1 a)
- 2.2 b)
- 3 Handing in

1. Exercise

3 points

The Collatz or $3 n+1$ problem is the following:

- Let n be a positive integer.
- Let $g(n)=n / 2$ is n is even and $3 n+1$ is odd.
- Then one can iterate g over-and-over for any given number. For example starting with 98:

```
{98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2,
```

It is an interesting and unproven conjecture that starting from any number, you will reach 1 sooner or later. In the example above it took 25 steps. For example 5 -> 16 -> 8 -> 4 -> 2 -> 1 takes 5 steps.

Plot the number of steps needed to reach one against n, use ListPlot and $n=1 \ldots 1000$

2. Exercise

a)

3 points

Define a function T with three arguments:

- f a function
- n a natural number
- $x 0$ a real number

For this values calculate the $n^{\text {th }}$ Taylor polynomial of f around $x 0$.
For example:

```
In[1]:= T[Exp,4,0]
Out[1]:= 1 + x + x^2/2 + x^3/6 + x x^4/24
```

Note that there is a buit-on function Series which does exactly this, but don't use that, implement it on your own! Use the sum symbol from the paletta and the Derivative.
b)

3 points

Plot the function $e^{-x^{2}}$ and its derivatives on a single Plot. For a given M, plot $f, f^{\prime}, f^{\prime \prime} \ldots f^{(M)}$ on the interval [$-2,2$] (this is $M+l$ functions in total). Use Manipulate to set the value of M.

Handing in

Deadline: 2018.11.25 23:59
Attach the solution notebook file to the email named like this (use your own login, not mine):

A1_borbely_HW6.nb

