Szerkesztő:Mozo/A3 gyakorló feladatok 6.

A MathWikiből
< Szerkesztő:Mozo
A lap korábbi változatát látod, amilyen Mozo (vitalap | szerkesztései) 2017. január 14., 17:19-kor történt szerkesztése után volt.

Differenciálgeometria

Ívhossz és ívhosszparaméterezés

s=\int\limits_{t_1}^{t_2}|\dot{\mathbf{r}}(t)|dt
s(t')=\int\limits_{t_0}^{t'}|\dot{\mathbf{r}}(t)|dt
s=s(t')\qquad\to\qquad t'=t'(s)\qquad\to\qquad \mathbf{r}(s)=\mathbf{r}(t')|_{t'=t'(s)}


1. a) Mi az alábbi görbe ívhossza a [1,e] paraméterszakaszon és mi az ívhosszparaméterezése t=1-tól kezdődően?

\mathbf{r}(t)=(t\cos \ln t, t\sin \ln t, t)

b) Mi az alábbi görbe ívhossza a [0,1] paraméterszakaszon és mi az ívhosszparaméterezése t=0-tól kezdődően?

\mathbf{r}(t)=(\frac{4\sqrt{3}}{3}\sqrt{t^3}, 2t, \frac{3}{2}t^2)

MO.: a)

\dot{\mathbf{r}}(t)=(\cos\ln t-t\sin\ln t\cdot \frac{1}{t},\sin\ln t+t\cos\ln t\cdot \frac{1}{t}, 1)=(\cos\ln t-\sin\ln t,\sin\ln t+\cos\ln t, 1)
|\dot{\mathbf{r}}(t)|=\sqrt{(\cos\ln t-\sin\ln t)^2+(\sin\ln t+\cos\ln t)^2+1}=
=\sqrt{\cos^2\ln t+\sin^2\ln t-2\cos\ln t\sin\ln t+\cos^2\ln t+\sin^2\ln t+2\cos\ln t\sin\ln t+1}=\sqrt{1+1+1}=\sqrt{3}

Ívhossz: [1,e]-n:

s=\int\limits_{1}^{e}\sqrt{3}\,dt=[\sqrt{3}\cdot t]_1^e=\sqrt{3}(e-1)

Ívhossz paraméterezés t=1-től:

s(t')=\int\limits_{t=1}^{t'}\sqrt{3}\,dt=[\sqrt{3}\cdot t]_{1}^{t'}=\sqrt{3}(t'-1)\qquad\to\qquad t'=\frac{s}{\sqrt{3}}+1
\mathbf{r}(s)=\left(\left(\frac{s}{\sqrt{3}}+1\right)\cos \ln \left(\frac{s}{\sqrt{3}}+1\right), \left(\frac{s}{\sqrt{3}}+1\right)\sin \ln \left(\frac{s}{\sqrt{3}}+1\right), \frac{s}{\sqrt{3}}+1\right)

b)

\sqrt{t^3}=t^{\frac{3}{2}}
\dot{\mathbf{r}}(t)=(\frac{4\sqrt{3}}{3}\frac{3}{2}\sqrt{t}, 2, \frac{3}{2}2t)=(2\sqrt{3}\sqrt{t}, 2, 3t)
|\dot{\mathbf{r}}(t)|=\sqrt{12t+ 4+9t^2}=

Vegyük észre, hogy a négyzetgyök alatt teljes négyzet áll:

=\sqrt{12t+ 4+9t^2}=\sqrt{9t^2+12t+4}=\sqrt{(3t+2)^2}=|3t+2| ez t>0-ra persze azonos 3t+2-vel.

Ívhossz: [1,e]-n:

s=\int\limits_{0}^{10}3t+2\,dt=\left.\frac{(3t+2)^2}{6}\right|_0^{10}=\frac{(32)^2}{6}-\frac{2}{3}

Ívhossz paraméterezés t=0-tól:

s(t')=\int\limits_{t=1}^{t'}3t+2\,dt=\left[\frac{(3t+2)^2}{6}\right]_{0}^{t'}=\frac{(3t'+2)^2}{6}-\frac{2}{3}
t'=\frac{\sqrt{6(s+\frac{2}{3})}-2}{3}=\frac{\sqrt{6s+4}-2}{3}
\mathbf{r}(s)=\left(\frac{4\sqrt{3}}{3}\sqrt{\left(\frac{\sqrt{6s+4}-2}{3}\right)^3}, 2\frac{\sqrt{6s+4}-2}{3}, \frac{3}{2}\left(\frac{\sqrt{6s+4}-2}{3}\right)^2\right)

Felszín

\mathbf{r}=\mathbf{r}(u,v) esetén

A=\iint\limits_{T_{u,v}}|\partial_u\mathbf{r}\times\partial_v\mathbf{r}|\,dudv

z = f(x,y) esetén

A=\iint\limits_{T_{x,y}}\sqrt{(\partial_xf)^2+(\partial_yf)^2+1}\,dxdy

2. a) Számítsuk ki a z = x2y2 egyenlettel adott felület azon darabjának felszínét, melyet az x^2+y^2\leq 4, x\geq 0 feltételek adnak meg!

b) Számítsuk ki a z=\frac{x^2}{2y} egyenlettel adott felület azon darabjának felszínét, melyet az 1\leq x\leq 2, 1\leq y\leq 3 feltételek adnak meg!

c) Számítsuk ki az \mathbf{r}(u,v)=(u\cos v,u\sin v,u) felület azon darabjának felszínét, melyet a 0\leq u\leq 2, 0\leq v\leq \pi feltételek adnak meg!

MO.: a)

\sqrt{(\partial_xz(x,y))^2+(\partial_yz(x,y))^2+1}=\sqrt{(2x)^2+(2y)^2+1}=\sqrt{4x^2+4y^2+1}=\sqrt{4(x^2+y^2)+1}

Mivel a tartomány is és a függvény is hengerszimmetriát mutat (minden amiben x2 + y2 van, az hengerszimmetrikus), ezért az integrált hengerkoordinátákban számítjuk ki. A tartomány derékszögű és polárparamméterezése (érdemes felrajzolni koordniátarendszerben és leolvasni az r-t, φ-t):

T_{x,y}=\{(x,y)\mid x^2+y^2\leq 4, x\geq 0 \}
T_{r,\varphi}=\{(r,\varphi)\mid 0\leq r\leq 2, -\frac{\pi}{2}\leq\varphi\leq \frac{\pi}{2}\}
Személyes eszközök